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Abstract. We design quantum algorithms for maximum matching. Work-
ing in the query model, in both adjacency matrix and adjacency list
settings, we improve on the best known algorithms for general graphs,
matching previously obtained results for bipartite graphs. In particular,
for a graph with n vertices and m edges, our algorithm makes O(n7/4)
queries in the matrix model and O(n3/4(m + n)1/2) queries in the list
model. Our approach combines Gabow’s classical maximum matching al-
gorithm [Gabow, Fundamenta Informaticae, ’17] with the guessing tree
method of Beigi and Taghavi [Beigi and Taghavi, Quantum, ’20].
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1 Introduction

A matching is a set of non-adjacent edges in an undirected graph. In the maxi-
mum matching problem, one tries to find the matching with the largest number
of edges. Finding the maximum matching in a graph is a problem that is both
of fundamental and practical importance. Its practical applications range from
kidney exchange to scheduling to characterizing chemical structures [17,7,14]. As
a fundamental problem, it has stimulated a string of algorithmic developments,
such as the use of blossoms and dual variables [6], which have been useful in the
development of a broad range of algorithms. Additionally, maximum matching
in general (bipartite and non-bipartite) graphs is notable for the difficulty re-
searchers have had in finding a simple and correct algorithm for this seemingly
straightforward problem [15,8].

We study maximum matching in the query setting: We are given a graph
G as an adjacency matrix or adjacency list and the goal is to find a maximum
matching with as few queries as possible. A query in the matrix model takes the
form, “Do vertices x and y share an edge?” A query in the list model takes the
form, “What is the ith vertex adjacent to vertex x?”

The best classical algorithms for maximum matching solve the problem in
O(m

√
n) time for both bipartite and general graphs [8,9,15,18]. The query com-

plexity of these classical algorithms is the trivial O(n2) in the matrix model and

ar
X

iv
:2

01
0.

02
32

4v
2 

 [
cs

.D
S]

  1
1 

M
ay

 2
02

1



2 S. Kimmel and R. T. Witter

O(m) in the list model. In fact, using an adversarial argument, it is easy to see
that any classical algorithm must query all pairs of vertices or all edges to find
a maximum matching in the worst case.

Using quantum computers, however, we can do better. Lin and Lin found
a quantum algorithm that solves maximum matching on a bipartite graph in
O(n7/4) queries in the matrix model [13]. Beigi and Taghavi created an algorithm
that uses O(n3/4

√
m+ n) queries in the list model for bipartite graphs [3], which

in the worst case when m = Ω(n2), matches the result of Lin and Lin. Both
results use the guessing tree method: Lin and Lin introduced the method for
functions with binary input and Beigi and Taghavi generalized it to functions
with non-binary input.

Our contribution is a quantum maximum matching algorithm for general
graphs that uses O(n7/4) queries in the matrix model and O(n3/4

√
m+ n) in the

list model, matching the prior results for bipartite graphs. We combine two pow-
erful techniques to obtain our result: Beigi and Taghavi’s guessing tree method
and Gabow’s relatively simple algorithm for maximum matching [3,8]. The key
technical issues in combining these two approaches are a careful accounting of
which steps of the classical algorithm actually require queries, slight modifica-
tions to the classical algorithm that help us bound the number of queries, and
a well-chosen definition of the guessing scheme for the decision tree used in the
guessing tree method.

The previous best known quantum algorithms for maximum matching on
general graphs ran in trivial query complexity. Ambainis and Špalek designed
algorithms for general maximum matching that run in O(n5/2 log n) time in the
matrix model and O(n2(

√
m/n + log n) log n) time in the list model [2]. Dörn

found an algorithm for general maximum matching that runs in O(n2 log2 n)
time in the matrix model and O(n

√
m log2 n) time in the list model [5].

While our result unifies the cases of bipartite and general graphs, there re-
mains a gap between our upper bound and the best known lower bound. Berzina
et al. and Zhang found a lower bound for maximum matching of O(n3/2) [4,19].
Interestingly, Zhang proved that Ambainis techniques (one of the most useful
methods for finding quantum lower bounds) cannot improve the current lower
bound [1,19].

1.1 Graph Theory

Given an undirected graph G, we denote by V (G) the set of vertices and E(G)
be the set of edges of G. Call n = |V (G)| the number of vertices in a graph and
m = |E(G)| the number of edges. We represent an edge between vertices x and
y as xy.

We denote the symmetric difference of two graphs G1 and G2 as G1 ⊕ G2.
Then V (G1 ⊕ G2) is V (G1) ∪ V (G2) and xy ∈ E(G1 ⊕ G2) if and only if xy ∈
E(G1) but xy /∈ E(G2) or xy ∈ E(G2) but xy /∈ E(G1). We may think of the
symmetric difference as the graph equivalent of addition modulo 2.

A matching M is a set of non-adjacent edges of G. That is, if xy is in M ,
then there is no other edge connected to x or y in M . The solid edges in Figure 1
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form a matching. A maximum matching on G is a matching with the most edges
of any matching on G. We call a vertex a free vertex if it is not on any edge in
matching M , while if a vertex is not free we called it matched. A matched edge
is in a matching while an unmatched edge is not.

A blossom is a cycle of length 2k + 1 with k matched edges and k + 1 un-
matched edges. The edges alternate between matched and unmatched edges with
the exception of the two edges connected to the root of the blossom. In Figure 1,
the blossom has 2(2) + 1 = 5 edges and the root is the vertex in the cycle closest
to the left free vertex.

Fig. 1. Example graph with a matching where the solid lines are edges in the matching
and the dotted lines are edges not in the matching but in the underlying graph. The
free vertices are squares, the outer vertices (excluding the free vertices) are filled circles,
and the inner vertices are hollow circles.

An augmenting path is a set of edges between two free vertices that alter-
nates between matched and unmatched edges. In Figure 1, the horizontal edges
connecting the two free vertices (represented as squares) is not an augmenting
path because there are two consecutive unmatched edges. A sap (shortest aug-
menting path) is an augmenting path with the fewest edges of any augmenting
path. In Figure 1, the augmenting path along the blossom between the free ver-
tices forms a sap. We call a vertex inner with respect to an augmenting path
if it is closer than its matched pair (the vertex with which it shares a matched
edge) to the closest free vertex. Here ‘closeness’ is measured by the number of
edges on the augmenting path between the vertex in question and the closest
free vertex. Inner vertices are illustrated in Figure 1 as hollow circles. All other
vertices—including free vertices, all vertices on a blossom, and vertices adjacent
to an edge equidistant between two free vertices—are outer. Whether a vertex is
inner or outer may change as the augmenting paths grow: An inner vertex can
become outer (e.g. if it becomes part of a blossom) but an outer vertex cannot
become inner.

Notice that we can use the partial matching and sap in Figure 1 to get a larger
(in this case maximum) matching. We simply take the symmetric difference of
the partial matching and augmenting path. That is, we include every unmatched
edge (since it is in augmenting path but not the partial matching) and remove
every matched edge (since it is in both the augmenting path and the partial
matching). The result is a larger matching where each vertex with an edge in
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the partial matching has an edge in the larger matching and the previously free
vertices also have matched edges.

1.2 Query Complexity

In both the list and matrix models, we learn the edges of G by querying (i.e.
evaluating at various inputs) a function. We assume that G is a subgraph of
the complete graph of n vertices, labeled by elements of [n] = {0, 1, . . . , n− 1},
where we do not know which edges of the complete graph are part of G and
which are not.3 Then in the case of the adjacency matrix, we have a function
EM : [n]× [n]→ {0, 1}, where EM (x, y) = 1 if and only if the edge xy ∈ E(G).

In the case of the adjacency list, we have a function EL : [n] × [n] → [n] ∪
{null} where

EL(x, i) =

{
y if y is the ith neighbor of x

null if u has less than i neighbors
.

Given access to one of these functions, the classical bounded error query
complexity of maximum matching is the number of times we must evaluate the
function in order to find a maximum matching with high probability.

In the quantum model, we are given access to unitaries called oracles that
encode the information of the functions EM and EL. In the adjacency matrix
model, we have access to an oracleOM that acts on the Hilbert space Cn×Cn×C2

such that for an edge e = xy, and b ∈ {0, 1}, OM |e〉|b〉 = |e〉|b⊕ EM (e)〉, where
addition is modulo 2. In the adjacency list model, we have access to an oracle
OL that acts on the Hilbert space Cn ×Cn ×Cn+1, where for a vertex x, index
i, and j ∈ [n + 1], acts as OL|x, i〉|j〉 = |x, i〉|j ⊕ EL(x, i)〉, where addition is
modulo n+ 1.

Given access to one of these oracles, the quantum bounded error query com-
plexity of maximum matching is the number of times we must apply the oracle
(as part of a quantum algorithm) in order to find a maximum matching with
high probability.

Given a classical query algorithm, one can create a decision tree that describes
the sequence and outcomes of queries that are made throughout the algorithm.
Each non-leaf vertex in the tree represents a query, and the outgoing edges from
a vertex represent possible outcomes of the query. Sets of query outcomes may
be grouped into a single edge (provided future decisions made by the algorithm
are independent of which particular query outcome within the set occurred).
Given such a decision tree, one can create a guessing scheme. A guessing scheme
is a labeling of edges such that exactly one outgoing edge from each vertex is
labelled as the guess. If the outcome of a query matches the guess, we say that
the guessing scheme correctly guessed the outcome of that query. Otherwise, we
say it was an incorrect guess.

3 One can easily extend to the case that G is a subgraph of a multigraph; we consider
complete graphs only for simplicity.
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Given such a decision tree and guessing algorithm, it is possible to design a
quantum algorithm:

Theorem 1 (Guessing Tree [3]). For positive integers k, `, and m, let f :
Df → [k] be a function with Df ⊆ [`]m. Let T be a decision tree for f with a
guessing scheme and let T be the depth of T . Define I as the maximum number
of incorrect guesses in any path from the root to a leaf of T . Then the bounded
error quantum query complexity of evaluating f is upper bounded by O(

√
TI).

The quantum space complexity is O(m).

See Beigi and Taghavi [3] for extensive applications of Theorem 1. Observe
that the size of the image of the function f does not affect the query complexity
or space complexity of the quantum algorithm that evaluates it. We use this fact
to specify the maximum matching (all O(n) edges) in the leaves of our decision
tree.

2 Result

We use Gabow’s algorithm to find a maximum matching in graph G. Gabow’s
algorithm runs in two phases. (The high level pseudocode is in Listing 2.1.) In the
first phase, the algorithm finds all the edges in G that are on saps. In the second
phase, the algorithm finds disjoint saps that are used to augment the partial
matching. Since a maximal set of disjoint saps are found in each iteration, there
are at most O(

√
n) iterations [9].

Listing 2.1. Gabow’s Algorithm [8]

1 M ← ∅ /∗ M i s the cur rent p a r t i a l matching ∗/
2 loop
3 /∗ Phase 1 ∗/
4 f o r every pa i r o f v e r t i c e s x, y do
5 i f xy ∈M then w(x, y)← 2 e l s e w(x, y)← 0
6 L i s t i n g 2/3 ( matrix / l i s t model ) to f i n d p a i r s o f v e r t i c e s on saps
7 i f no augmenting path i s found then
8 break /∗ M has maximum c a r d i n a l i t y ∗/
9

10 /∗ Phase 2 ∗/
11 L i s t i n g 4/5 ( matrix / l i s t ) to c r e a t e maximal s e t o f d i s j o i n t saps P
12 augment M by the paths o f P

The key idea behind the algorithm is the use of dual variables associated with
each vertex, and which we denote using a function d : V → Z. Each dual variable
is initialized to 1. A pair of vertices is tight if the sum of the dual variables d(x)
and d(y) is w(x, y). Recall from Listing 2.1 that w(x, y) is 2 if xy is a matched
edge and 0 otherwise. Intuitively, a pair of vertices is tight only if their shared
edge could be part of a sap [8].
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We use Gabow’s maximum matching algorithm to construct a decision tree
that finds a maximum matching. To apply Theorem 1 to the decision tree, we
must design a guessing scheme. In the matrix model, we always guess that the
edge we are querying is not present.

In the list model, when we are querying the ith vertex adjacent to x (call it
y), our guess depends on the phase of the algorithm. In the first phase, we guess
that x and y do not fit either of the following criteria:

– x and y are tight, x and y are not from the same blossom, and y has not yet
been found (i.e. added to S, see Listing 2.3), or

– x and y are tight, x and y are not from the same blossom, and y is outer.

In the second phase, we guess that x and y do not fit either of the following
criteria:

– x and y are tight, x and y do not share a matched edge, and y has not yet
been found (i.e. added to S′, see Listing 2.5), or

– x and y are tight, x and y do not share a matched edge, and x and y form
a blossom.

If our query to the list returns null, that is, we have reached the end of a vertex’s
adjacency list, we say that our guess is incorrect.

In the list model, while there might be multiple outcomes of a single query
that satisfy the correct guess conditions, we will see that the subsequent behavior
of the algorithm is the same, so we group all such correct outcomes into a single
edge in our decision tree, as described in Section 1.2.

Applying the above guessing scheme to Gabow’s algorithm, we prove our
main result:

Theorem 2. Given a graph G with m edges and n vertices, there is a bounded
error quantum algorithm that finds a maximum matching in O(n7/4) queries in
the matrix model and O(n3/4

√
m+ n) queries in the list model.

In the remainder of this section, we explain enough of Gabow’s algorithm
to analyze the performance of the quantum algorithm and to prove Theorem 2.
However, we do not address the correctness of Gabow’s algorithm or provide suf-
ficient details to understand why the algorithm is correct. Instead, we encourage
interested readers to peruse Gabow’s paper [8].

The choice to not make this paper self-contained is intentional: including the
full details of Gabow’s algorithm would double the length of this work without
adding any novel contributions.

2.1 Breadth-First Search Subroutine

The first phase of Gabow’s algorithm is a simplified search based on Edmonds’
algorithm that explores G breadth-first [6]. The goal is to identify all the edges
that are on saps. For this purpose, the algorithm maintains a subgraph S of
G with the vertices and edges that have been explored. Initially, S consists of
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only free vertices. As the algorithm progresses, edges and vertices are added.
We call the set of edges and vertices connected to a free vertex a search tree.
The algorithm terminates once two search trees become connected i.e. there is
an augmenting path from one free vertex to another.

The algorithm also maintains a record of the blossom that contains x, denoted
by Bx. We initially set Bx = x since every vertex is a trivial blossom and redefine
Bx when merging blossoms. When all tight pairs of vertices have been checked
and no sap has been found, the dual variables are adjusted to find new tight pairs
of vertices. If the dual variables cannot be adjusted, there are no augmenting
paths and the partial matching is maximum.

The execution of the simplified search based on Edmonds’ algorithm depends
on the data structure of the input graph. In the case of the matrix model de-
scribed in Listing 2.2, we first identify vertices x and y that fit the criteria on
Line 4. We then query the edge xy only if x and y satisfy either the if-statement
on Line 5 or the if-statement on Line 8. If we reach neither Line 6 nor Line 9
then no query is made in that iteration. If we make a query on Line 6 or Line 9
and the edge is not present, our guess is correct. In order to bound the number
of incorrect guesses, we bound the number of times we reach Line 7 and Line 10
which happens only if xy is present and is in the grow, blossom, or sap case.

Listing 2.2. Simplified Search based on Edmonds’ Algorithm in the Matrix Model [8]

1 f o r every ver tex x do d(x)← 1
2 make every f r e e ver tex outer and add to V (S)
3 loop
4 i f ∃ t i g h t pa i r x, y with x outer , Bx 6= By then
5 i f y /∈ V (S) then /∗ grow step ∗/
6 i f xy ∈ E(G) /∗ query ∗/ then
7 add x y, y y′ to S where y y′ ∈M
8 e l s e i f y i s outer then
9 i f xy ∈ E(G) /∗ query ∗/ then

10 i f x and y in the same search t r e e then
11 /∗ blossom step ∗/
12 merge a l l blossoms in fundamental c y c l e o f xy
13 e l s e /∗ xy forms a sap ∗/
14 return /∗ cont inue in L i s t i n g 1 ∗/
15 e l s e
16 dual adjustment s tep
17 /∗ no q u e r i e s are made , s ee Gabow Figure 2 f o r d e t a i l s ∗/

In the case of the list model described in Listing 2.3, we query from an outer
vertex x and find some adjacent vertex y. If x and y are not tight, x and y are not
from the same blossom or neither of the criteria on Lines 9 and 11 apply, then
our guess is correct. We bound the number of incorrect guesses by the number
of times we reach Lines 7, 10, and 12, which happens only if we have reached
the end of x’s neighbors or x and y are in the grow, blossom, or sap case.
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Observe that we can group the correct guesses in the list model into a single
edge in the decision tree because the algorithm’s behavior is the same in every
case: continue to query neighbors of x.

Lemma 1. The simplified search of Edmonds’ algorithm makes at most O(n)
incorrect guesses in a single call.

Proof. As discussed above, in both the matrix and list models, a guess is incorrect
only if we are in the grow, blossom, or sap case (or in the list model at the end
of a list). Therefore we bound the number of incorrect guesses by the number
of times we can reach each case. In the grow case where y /∈ S, we add both
y and y′ to S, where y y′ is in the current partial matching M . Since this case
only occurs when a vertex y is not in S, and there are at most n vertices in the
graph, this case can trigger at most n incorrect guesses.

In the blossom case where x and y are in the same search tree, we have
merged at least two blossoms. Each vertex is initially a blossom so we start with
a total of n blossoms. Each time we merge two or more blossoms, we reduce the
number of blossoms by at least one. Therefore we can merge blossoms at most
n times, and so we can only make n incorrect guesses in this case.

In the case where xy completes a sap, we halt the algorithm and so this may
happen at most once per call. In the list model, we can reach the end of a list
at most n times so the number of incorrect guesses due to null outcomes is
bounded by n.

Listing 2.3. Simplified Search based on Edmonds’ Algorithm in the List Model

1 f o r every ver tex x do d(x)← 1
2 make every f r e e ver tex outer and add to V (S)
3 loop
4 f o r every outer ver tex x do
5 f o r every ver tex y adjacent to x do
6 i f y i s n u l l then /∗ end o f l i s t ∗/
7 break /∗ go to next x ∗/
8 e l s e i f x and y are t i g h t and Bx 6= By then
9 i f y /∈ V (S) then /∗ grow step ∗/

10 add x y, y y′ to S where y y′ ∈M
11 e l s e i f y i s outer then
12 i f x and y in the same search t r e e then
13 /∗ blossom step ∗/
14 merge a l l blossoms in fundamental c y c l e o f xy
15 e l s e /∗ xy forms a sap ∗/
16 return /∗ cont inue in L i s t i n g 1 ∗/
17 dual adjustment s tep
18 /∗ no q u e r i e s are made , s e e Gabow Fig . 2 f o r d e t a i l s ∗/
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2.2 Depth-First Search Subroutine

In the second phase of the algorithm—the path-preserving depth-first search—
we identify disjoint saps. We define a subgraph H of the complete graph which
we initialize with the edges between every pair of tight vertices in S. (While
many edges in H were queried in the breadth-first subroutine, not all were; in
particular, most edges between search trees have not yet been queried.) The
algorithm explores H from each free vertex in order to find another free vertex.

Listing 2.4. Path-Preserving Depth-First Search in the Matrix Model [8]

1 i n i t i a l i z e P to an empty s e t
2 f o r each f r e e ver tex f do
3 i f f /∈ V (P ) then
4 i n i t i a l i z e S′ to an empty graph
5 add f to S′ as the root o f a new search t r e e
6 find ap(f)
7
8 procedure find ap(x : /∗ x i s an outer ver tex ∗/
9 f o r each edge xy ∈ E(H) \M do

10 i f y /∈ V (S′) then
11 i f xy ∈ E(G) /∗ query ∗/ then
12 i f y i s f r e e then /∗ y completes a sap ∗/
13 add xy to S′ and sap to P
14 terminate a l l cur rent r e c u r s i v e c a l l s to find ap
15 remove a l l edges o f sap from H
16 r e c u r s i v e l y remove a l l dang l ing edges from H
17 e l s e /∗ grow step ∗/
18 add xy, y y′ to S′ where y y′ ∈M
19 find ap(y′)
20 /∗ a c c e s s i b l e only i f y′ i s not on a sap ∗/
21 remove y and y′ from H
22 e l s e
23 remove xy from H
24 r e c u r s i v e l y remove a l l dang l ing edges from H
25 e l s e i f blossom found then
26 i f xy ∈ E(G) /∗ query ∗/ then
27 blossom procedure /∗ s ee Gabow Fig . 4 f o r d e t a i l s ∗/
28 /∗ c a l l s find ap(x) from each ver tex x in blossom ∗/
29 e l s e
30 remove xy from H
31 r e c u r s i v e l y remove a l l dang l ing edges from H

While H contains edges on saps, one edge can be on more than one sap. This
is a problem, as we need disjoint saps in order to augment the partial matching.
To account for this, using recursive calls, the depth-first search explores H from
a single free vertex and forms a new subgraph S′ of visited vertices along the way.
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Once another free vertex is found from the starting free vertex, the algorithm
processes the sap and terminates all current calls, disallowing edges of the present
sap from being used in future saps and reinitializing S′. Then another call is made
from a new free vertex. If the algorithm identifies a vertex on a blossom that has
already been explored, new recursive calls are initiated from each vertex on the
blossom.

We maintain the property that all edges in H are on as yet unidentified saps
by deleting edges and vertices in several cases: When we find a sap, we remove
all the edges and vertices along it. Thus no remaining sap in H can share an edge
with one that was already found. When we query an edge that is not present,
we remove it from H. When the recursive call does not find a sap containing
vertex x, we remove x and its adjacent edges. After deletions, some dangling
edges may remain in H. A dangling edge has an adjacent vertex with degree one
(as a result of a deletion) that is not a free vertex. We remove dangling edges
from H by recursively deleting the edge and adjacent vertex with degree one in
addition to resulting dangling edges.

Listing 2.5. Path-Preserving Depth-First Search in the List Model

1 i n i t i a l i z e P to an empty s e t
2 f o r each f r e e ver tex f do
3 i f f /∈ V (P ) then
4 i n i t i a l i z e S′ to an empty graph
5 add f to S′ as the root o f a new search t r e e
6 find ap(f)
7
8 procedure find ap(x) : /∗ x i s an outer ver tex ∗/
9 f o r every ver tex y adjacent to x do

10 i f y i s n u l l then /∗ end o f l i s t ∗/
11 break /∗ go to o r i g i n o f cur rent c a l l to find ap ∗/
12 e l s e i f xy ∈ E(H) \M then
13 i f y /∈ V (S′) then
14 i f y i s f r e e then /∗ y completes a sap ∗/
15 add xy to S′ and sap to P
16 terminate a l l cur rent r e c u r s i v e c a l l s to find ap
17 remove a l l edges o f sap from H
18 r e c u r s i v e l y remove a l l dang l ing edges from H
19 e l s e /∗ grow step ∗/
20 add x y, y y′ to S′ where y y′ ∈M
21 find ap(y′)
22 /∗ a c c e s s i b l e only i f y′ i s not on a sap ∗/
23 remove y and y′ from H
24 e l s e i f blossom found then
25 blossom procedure /∗ s ee Gabow Figure 4 f o r d e t a i l s ∗/
26 /∗ c a l l s find ap(x) from each ver tex x in blossom ∗/
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Gabow’s original version of the path-preserving depth-first search does not
need to maintain the property that all edges in H are on as yet unidentified
saps since other edges can be weeded out through the course of the algorithm.
Since our goal is to bound costly “incorrect” queries, we cannot afford to wait
to remove these edges and must preemptively do so. We need to ensure that this
modification does not affect the correctness of the algorithm, but it is easy to
see that the edges we remove from H (described in the previous paragraph) can
not be part of any as yet undiscovered disjoint saps. Since the purpose of this
subroutine is to discover a set of disjoint saps, this modification does not affect
the correctness of this phase. This change might affect the runtime, but as we
are concerned with query complexity rather than time complexity, we will not
further analyze the runtime consequences.

The path-preserving depth-first search depends on the data structure of the
input graph. In the case of the matrix model described in Listing 2.4, we identify
vertices x and y that fit the criteria on Line 9 and either Line 10 or Line 25. We
then query the edge xy on Line 11 or Line 26. If the edge is not present, our
guess is correct. In order to bound the number of incorrect guesses, we bound
the number of times we reach Line 12 and Line 27, which happens only if xy is
present and completes a sap, triggers a grow step, or forms a blossom.

In the case of the list model described in Listing 2.5, we query from outer
vertex x and find some adjacent vertex y. If x and y are not tight, x and y share
a matched edge, or neither of the criteria on Lines 13 and 24 apply, then our
guess is correct. While there might be multiple query outcomes that count as
correct, the algorithm behaves the same in each case: continue to query the next
neighbor of x. In order to bound the number of incorrect guesses, we bound the
number of times we reach Lines 11, 13, and 25, which happens only if we have
reached the end of x’s neighbors or x and y complete a sap, trigger a grow step,
or form a blossom.

Lemma 2. The path-preserving depth-first search makes at most O(n) incorrect
guesses in a single call.

Proof. In both the matrix and list models, a guess is incorrect only if we are
in the sap, grow, or blossom case. Therefore we bound the number of incorrect
guesses by the number of times we can reach each case. If y is a free vertex, we
have found a sap and immediately remove x and y from H since they lie on a
sap we have found. Thus we can bound the number of incorrect guesses in this
case by the number of free vertices which is in turn bounded by n.

If y is not a free vertex, y may either be on a sap or not. Note that since xy
is tight, it could be on a sap but if another edge further on the potential sap is
not present or the potential sap overlaps with a sap already in P we say that y
is not on a sap.

If y is not a free vertex and is on a sap, we remove x and y from H once the
sap is found. Observe that there is a one-to-one correspondence between the edge
xy and the vertex y. That is, since y is now in S′, we will not process another
edge z y for some vertex z. It follows that the number of incorrect guesses in this
case is bounded by the number of vertices n.
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If y is not a free vertex and is not on a sap, we will return from the call and
remove y and y′ from H (see Line 21 in Listing 2.4, Line 23 in Listing 2.5). We
can safely remove these vertices because y′ is not on a sap and for y to be on a
sap, there would be two consecutive unmatched edges which is a contradiction.
Then the number of incorrect guesses in this case is bounded by the number of
vertices we can remove which is n.

If x and y form a blossom then we can bound the number of incorrect guesses
by the number of times blossoms can be merged which is in turn bounded by
n, the number of blossoms initially present. In the list model, we can reach the
end of a list at most n times so the number of incorrect guesses due to null

outcomes is bounded by n.

We now combine the two lemmas to prove our main result.

Proof (of Theorem 2). The guessing scheme is described above the statement of
Theorem 2. We create a decision tree using Listing 2.1. The depth of the decision
tree is the total number of queries we would need to make to learn the graph
G. In the matrix model, this is n2. In the list model, this is m + n because we
need to check each vertex and all the edges in its adjacency list. We can ensure
this bound by keeping a classical record of our queries and query outcomes and,
before querying the oracle, checking whether we have made this query before.
By Lemma 1, Lemma 2, and the O(

√
n) bound on the number of iterations, the

number of incorrect guesses is bounded by O(n
√
n). Then Theorem 2 follows

from Theorem 1.

3 Conclusion

We used a classical maximum matching algorithm and the guessing tree method
to give a O(n7/4) query bound in the matrix model and O(n3/4

√
m+ n) query

bound in the list model for maximum matching on quantum computers and
general graphs. Our result narrows the gap between the previous trivial upper
bounds of O(n2) and O(m) and the quantum query complexity lower bound of
O(n3/2). An important open problem is to determine whether this algorithm is
optimal. Progress on this question could be made by improving the lower bound,
perhaps using the general adversary bound [10].

Another open problem is to bound the time complexity of the guessing tree
method. Such a result would then allow us to compare the maximum match-
ing algorithm described in this paper to existing quantum maximum matching
algorithms that aim to minimize time complexity rather than query complex-
ity. The time complexity of implementing the guessing tree method is currently
unknown. The guessing tree algorithm is based on the dual adversary bound
[3], and the quantum algorithm that results is an alternating sequence of input-
dependent and input-independent unitaries, at least in the binary case [16,12].
While the input-dependent unitary is simply the oracle and may be applied in
constant time, the time complexity of the input-independent unitary depends on
finding an efficient implementation of a quantum walk on the decision tree. The



Quantum Maximum Matching 13

guessing tree algorithm is similar to the st-connectivity span program algorithm,
for which a relationship between query and time complexity is known [11]. The
scaling between time and query complexity in that algorithm depends on the
time complexity of implementing a quantum walk on the decision tree and on
the spectral gap of the normalized Laplacian of the decision tree. It would be
interesting if a similar relationship holds for the guessing tree algorithm, and if
so, how it applies to the specific case of maximum matching.
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