Skip to main content

A Query-Efficient Quantum Algorithm for Maximum Matching on General Graphs

  • Conference paper
  • First Online:
Algorithms and Data Structures (WADS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12808))

Included in the following conference series:

  • 1244 Accesses

Abstract

We design quantum algorithms for maximum matching. Working in the query model, in both adjacency matrix and adjacency list settings, we improve on the best known algorithms for general graphs, matching previously obtained results for bipartite graphs. In particular, for a graph with n vertices and m edges, our algorithm makes \(O(n^{7/4})\) queries in the matrix model and \(O(n^{3/4}(m+n)^{1/2})\) queries in the list model. Our approach combines Gabow’s classical maximum matching algorithm [Gabow, Fundamenta Informaticae, ’17] with the guessing tree method of Beigi and Taghavi [Beigi and Taghavi, Quantum, ’20].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    One can easily extend to the case that G is a subgraph of a multigraph; we consider complete graphs only for simplicity.

References

  1. Ambainis, A.: Quantum lower bounds by quntum arguments. J. Comput. Syst. Sci. 64(4), 750–767 (2002). https://doi.org/10.1006/jcss.2002.1826, http://www.sciencedirect.com/science/article/pii/S002200000291826X

  2. Ambainis, A., Špalek, R.: Quantum algorithms for matching and network flows. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 172–183. Springer, Heidelberg (2006). https://doi.org/10.1007/11672142_13

    Chapter  Google Scholar 

  3. Beigi, S., Taghavi, L.: Quantum speedup based on classical decision trees. Quantum 4, 241 (2020). https://doi.org/10.22331/q-2020-03-02-241, https://quantum-journal.org/papers/q-2020-03-02-241/, publisher: Verein zur Förderung des Open Access Publizierens in den Quantenwissenschaften

  4. Berzina, A., Dubrovsky, A., Freivalds, R., Lace, L., Scegulnaja, O.: Quantum query complexity for some graph problems. In: Van Emde Boas, P., Pokorný, J., Bieliková, M., Štuller, J. (eds.) SOFSEM 2004. LNCS, vol. 2932, pp. 140–150. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24618-3_11

    Chapter  Google Scholar 

  5. Dörn, S.: Quantum algorithms for matching problems. Theor. Comput. Syst. 45, 613–628 (2009). https://doi.org/10.1007/s00224-008-9118-x

    Article  MathSciNet  MATH  Google Scholar 

  6. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965). https://doi.org/10.4153/CJM-1965-045-4, https://www.cambridge.org/core/journals/canadian-journal-of-mathematics/article/paths-trees-and-flowers/08B492B72322C4130AE800C0610E0E21

  7. Fujii, M., Kasami, T., Ninomiya, K.: Optimal sequencing of two equivalent processors. SIAM J. Appl. Math. 17(4), 784–789 (1969). https://www.jstor.org/stable/2099319

  8. Gabow, H.N.: The weighted matching approach to maximum cardinality matching. Fundamenta Informaticae 154(1–4), 109–130 (2017). https://doi.org/10.3233/FI-2017-1555, https://content.iospress.com/articles/fundamenta-informaticae/fi1555, publisher: IOS Press

  9. Hopcroft, J.E., Karp, R.M.: An n\(^{\wedge }\)(5/2) algorithm for maximum matchings in bipartite graphs. SIAM J. Comput. Philadelphia 2(4), 7 (1973). http://dx.doi.org.ezproxy.middlebury.edu/10.1137/0202019, http://search.proquest.com/docview/919736551/abstract/79AD5CB7D4BA4C4EPQ/1, num Pages: 7 Place: Philadelphia, United States, Philadelphia Publisher: Society for Industrial and Applied Mathematics

  10. Hoyer, P., Lee, T., Spalek, R.: Negative weights make adversaries stronger. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing, pp. 526–535. STOC 2007, Association for Computing Machinery, San Diego, California, USA (2007). https://doi.org/10.1145/1250790.1250867, https://doi.org/10.1145/1250790.1250867

  11. Jeffery, S., Kimmel, S.: Quantum algorithms for graph connectivity and formula evaluation. Quantum 1, 26 (2017). https://doi.org/10.22331/q-2017-08-17-26, https://quantum-journal.org/papers/q-2017-08-17-26/

  12. Lee, T., Mittal, R., Reichardt, B.W., Spalek, R., Szegedy, M.: Quantum query complexity of state conversion. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 344–353 (2011). https://doi.org/10.1109/FOCS.2011.75, http://arxiv.org/abs/1011.3020, arXiv: 1011.3020

  13. Lin, C., Lin, H.H.: Upper bounds on quantum query complexity inspired by the Elitzur-Vaidman bomb tester. Theor. Comput. 12(18), 1–35 (2016). https://doi.org/10.4086/toc.2016.v012a018

    Article  MathSciNet  MATH  Google Scholar 

  14. May, J.W.: Cheminformatics for genome-scale metabolic reconstructions. Ph.D. Thesis, Cambridge University (2015). https://doi.org/10.17863/CAM.15987

  15. Micali, S., Vazirani, V.V.: An O(sqrt(|v|)|E|) algorithm for finding maximum matching in general graphs. In: 21st Annual Symposium on Foundations of Computer Science (sfcs 1980), pp. 17–27 (Oct 1980). https://doi.org/10.1109/SFCS.1980.12, ISSN: 0272-5428

  16. Reichardt, B.W.: Span programs and quantum query complexity: the general adversary bound is nearly tight for every boolean function. In: 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pp. 544–551 (2009). https://doi.org/10.1109/FOCS.2009.55, http://arxiv.org/abs/0904.2759, arXiv: 0904.2759

  17. Roth, A.E., Sonmez, T., Unver, M.U.: Pairwise Kidney Exchange. J. Econ. Theor. 125(2), 151–188 (2005). https://www.hbs.edu/faculty/Pages/item.aspx?num=19520

  18. Vazirani, V.V.: A simplification of the MV matching algorithm and its proof. arXiv:1210.4594 [cs] (2013). http://arxiv.org/abs/1210.4594, arXiv: 1210.4594

  19. Zhang, S.: On the power of ambainis lower bounds. Theor. Comput. Sci. 339(2), 241–256 (2005). https://doi.org/10.1016/j.tcs.2005.01.019, http://www.sciencedirect.com/science/article/pii/S0304397505001234

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Teal Witter .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kimmel, S., Witter, R.T. (2021). A Query-Efficient Quantum Algorithm for Maximum Matching on General Graphs. In: Lubiw, A., Salavatipour, M., He, M. (eds) Algorithms and Data Structures. WADS 2021. Lecture Notes in Computer Science(), vol 12808. Springer, Cham. https://doi.org/10.1007/978-3-030-83508-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83508-8_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83507-1

  • Online ISBN: 978-3-030-83508-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics