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Abstract

Filters (such as Bloom Filters) are a fundamental data structure that speed up network routing and
measurement operations by storing a compressed representation of a set. Filters are very space efficient,
but can make bounded one-sided errors: with tunable probability ε, they may report that a query element
is stored in the filter when it is not. This is called a false positive. Recent research has focused on
designing methods for dynamically adapting filters to false positives, thereby reducing the number of
false positives when some elements are queried repeatedly.

Ideally, an adaptive filter would incur a false positive with bounded probability ε for each new query
element, and would incur o(ε) total false positives over all repeated queries to that element. We call such
a filter support optimal .

In this paper we design a new Adaptive Cuckoo Filter, and show that it is support optimal (up to
additive logarithmic terms) over any n queries when storing a set of size n. Our filter is very simple:
fixing previous false positives requires a simple cuckoo-like operation, and the filter does not need to store
any additional metadata. This data structure is the first practical data structure that is support optimal,
and the first support optimal filter that does not require additional space beyond a normal cuckoo filter.

We complement these bounds with experiments that show that our data structure is effective at fixing
false positives on network trace datasets, outperforming previous Adaptive Cuckoo Filters.

Finally, we investigate adversarial adaptivity, a stronger notion of adaptivity in which an adaptive
adversary repeatedly queries the filter, using the result of previous queries to drive the false positive rate
as high as possible. We prove a lower bound showing that a broad family of filters, including all known
Adaptive Cuckoo Filters, can be forced by such an adversary to incur a large number of false positives.

1 Introduction

A filter is a data structure that supports membership queries for a set of elements S = x1, . . . xn from a
universe U . The answer to each filter query is present or absent. Typically, a filter has a correctness
guarantee: if an element q ∈ S, the filter must return present to the query with probability 1. There is also
a performance guarantee: if an element q /∈ S, the filter must return present with tunable probability at
most ε. If a query on an element q /∈ S returns present then q is called a false positive . Typically, filters
use a small amount of space.

A filter’s small size means that the filter can be stored in an efficiently accessible location. Meanwhile,
the no-false-negative guarantee implies that if the filter returns q /∈ S for a query q, then there is no need for
accessing the actual data, which is typically stored in a medium with expensive access cost. This ability to filter
out queries to items not in S in a small-size structure has found a wide variety of network applications such as
collaboration in peer-to-peer networks, resource routing, packet routing, and measurement infrastructures [6]
as well as many areas of network security [14].
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There are several different kinds of filters. The Bloom filter [5] was the first filter data structure to be
designed; it is still very popular due to its simplicity and efficiency. Later filters were designed to provide
better worst-case lookup times and space guarantees [3, 20, 23], improved practical performance [11, 24], and
improved cache performance [4].

In this paper, we focus on filters that achieve space very close to the optimal lower bound of n log 1/ε
bits [8, 16], and that store elements from a large universe |U | � n.

Fixing False Positives A well-known issue with many existing filters is that they cannot adapt to queries:
if a query q /∈ S is a false positive, all subsequent queries q′ = q will be false positives. The focus of this
paper is designing filters that do adapt to false positive queries, so that if a query q is a false positive, the
filter undergoes structural changes so that a later query to q is unlikely to be a false positive. An element q is
said to be fixed if q was previously a false positive, but is no longer a false positive. Similarly, q is broken if
q was previously fixed, but is now a false positive.

Related Work. Bender et al. [3] analyzed how to fix false positives against an adversary. They give a
data structure such that if queries are generated by an adversary trying to maximize the false positive rate,
each query to a filter is a false positive with probability at most ε, even if the query element was queried
before. This requirement essentially provides concentration bounds: over n queries, their filter incurs εn false
positives, even if the queries are maliciously chosen based on previous false positives.

However, the benefit of adaptivity goes beyond resisting an adversary. As shown experimentally by
Mitzenmacher et al. [17], adapting to queries can significantly decrease the number of false positives—in fact,
if queries are repeated sufficiently frequently, the performance can be much better than O(εn). In particular,
network trace data consists of a structured sequence of queries—can we give a data structure that performs
particularly well on this kind of data?

Most recently, Bender et al. [2] compared adaptivity to cache-based strategies, finding that adaptivity
leads to significantly better practical performance.

Support Optimality Ideally, an adaptive filter would incur a false positive with probability ε for each
new query, and incur no further queries asymptotically. Thus, every new false positive is fixed, and this fixing
is unlikely to break previously-fixed false positives. In particular, let q1, . . . qn be a predetermined sequence of
queries1 to a filter F , and let Q =

⋃n
i=1{qi} be the set of unique queries in the sequence. We say that F is

support optimal if the expected number of false positives when querying q1, . . . qn is ε|Q|(1 + o(1)). In this
paper we give a support-optimal filter up to additive polylogarithmic terms, and show that it significantly
improves practical performance.

Avoiding Remote Memory Accesses Adaptive filters focus on the case where a filter is used to avoid
remote memory accesses. Oftentimes, network data is stored on large, slow storage. In this case, if the filter
is small enough to fit in faster storage, it can be used to rule out queries to elements not in the set. Thus,
when the filter answers absent, a slow query to the large storage is avoided, greatly improving throughput.

This use case is important because it allows us to assume (costly) access to the original set of items
being held in the filter. Bender et al. [3] gave a lower bound showing that this access is necessary to achieve
adaptivity, and indeed this assumption was used both in their data structre as well as in the Adaptive Cuckoo
Filter [17].

In particular, we assume that we can make O(1) expected accesses to S on each insert, as well as each time
the filter answers present. This does not asymptotically increase the number of accesses to slow storage.2 We

1Note that the filter does not have access to this sequence ahead of time; it must process the queries online. We fix a
predetermined sequence of queries to clarify that, unlike in [3], we do not allow each new query to be determined adversarially
based on the result of previous queries.

2In fact, if S is stored to allow for efficient, in-place reverse hash lookups—so that the normal hash lookup and the adaptive
rehashing can be performed simultaneously—then some false positives may be fixed without increasing the number of remote
accesses at all.
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use this assumption to “cuckoo” elements on a false positive, rehashing them and swapping them to another
slot. All previous adaptive cuckoo filters also require rehashing elements of S on a false positive [3, 17].

1.1 Results

We discuss three data structures in this paper: two versions of the Adaptive Cuckoo Filter originally presented
in [17] (which we call the Cyclic ACF and Swapping ACF ), and a Cuckoo Filter augmented with a new
method of achieving adaptivity, which we call the Cuckooing ACF .

The first contribution of this paper is the Cuckooing ACF, a support-optimal filter which can be
implemented using almost-trivial changes to current Cuckoo Filter implementations.

In Section 3, we analyze the Cuckooing ACF and prove that it is support optimal over any n queries, up
to additive polylogarithmic terms. This gives a significant performance improvement over previous filters
even for large Q, and the difference becomes more dramatic for small Q. For example, for the case of a
repeated single query (|Q| = 1), static filters incur εn false positives in expectation, whereas we show that
the Cuckooing ACF incurs O(log4 n) expected false positives.

We show that despite their strong practical performance, the Cyclic ACF and Swapping ACF are not
support optimal–even if there are a constant number of queries (|Q| = O(1)), they may incur Ω(n) false
positives, whereas the Cuckooing ACF incurs at most O(log4 n). Thus, from the standpoint of support
optimality, cuckooing is a better method for achieving adaptivity.

In Section 4, we provide experimental results that show that the theory bears out in practice: the
Cuckooing ACF attains a low false positive rate on network trace datasets, which contain many repeated
queries. The performance is not only stronger than a vanilla Cuckoo Filter, but also improves upon the
performance of a Cyclic ACF and a Swapping ACF of the same size. This shows that the Cuckooing ACF is
effective at fixing false positives in a practical sense. These results also emphasize the benefit of a simple
adaptive filter: not only is the resulting data structure easier to implement, the simplicity entails less space
usage compared to previous Adaptive Cuckoo Filters, leading to a significant performance improvement.

Finally, in Section 5, we prove lower bounds that demonstrate that a broad family of filters cannot be
adaptive in the adversarial sense of Bender et al. [3]; this includes the Cyclic ACF, the Swapping ACF, and
the Cuckooing ACF. This lower bound motivates the concept of support optimality: a support optimal filter
achieves strong performance on real datasets without achieving adversarial adaptivity. Our proof also gives
insight into the structure of adaptive filters—specifically, it shows that a space-efficient filter must have
variable-sized fingerprints in order to be adversarially adaptive.

1.2 Related Work

Mitzenmacher et al. [17] were the first to describe the notion of adaptivity. They show that Adaptive
Cuckoo Filters can significantly improve the number of false positives incurred on real-world network trace
datasets. We replicate their experiments in Section 4, and show that the Cuckooing ACF improves upon their
performance. They also give theoretical bounds that guarantee that a small number of false positives are
incurred by their data structures if queries are selected at random. Their work briefly mentions the swapping
strategy used in this paper (in the Cuckooing ACF), but does not analyze it.

Bender et al. [3] give a filter (achieving optimal space and optimal query time) that is adaptive against
an adversary. Their filter works by adding a constant number of bits to the filter on average for each false
positive encountered. This data structure gives strong bounds, but dynamically changing the number of bits
for each stored element is likely to be an obstacle to a practical implementation. Bender et al. also give a
lower bound showing that access to an external dictionary storing S is necessary to achieve adaptivity; this
helps motivate such accesses in our paper.

The Bloomier filter of Chazelle et al. [9] and the Weighted Bloom Filter of Bruck et al. [7] also aim to
reduce the false positive rate; however, both assume that frequent queries are known to the filter in advance.
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2 Three Adaptive Cuckoo Filters

In this section describe a new kind of filter, the Cuckooing ACF. We then discuss the Cyclic ACF and the
Swapping ACF, both originally introduced in [17].

We include a symbol table for reference in Appendix A.

2.1 ACF Parameters and Internal State

We begin by defining a more general data structure which we call the adaptive cuckoo filter (ACF). As
the name suggests, the Cyclic ACF, the Swapping ACF, and the Cuckooing ACF are adaptive cuckoo filters.

An ACF F has integer parameters f, k, b > 0, an additional parameter γ > 1, and supports storing n
elements from a universe U with a false positive rate ε. The internal representation of a filter F consists of k
hash tables, each of N = γn/bk bins,3 where each bin consists of b slots of f bits; thus, the space usage of F
is N · b · f · k bits. The parameter γ determines how densely elements are packed, trading off between insert
time and space; often γ ≈ 1.05 is used.

The hash tables are accessed using k + 1 hash functions: k location hash functions h`1, . . . , h
`
k : U →

{0, . . . , N − 1} that hash from U to a bit string of length logN ,4 and a single fingerprint hash hf mapping
each x ∈ U to an f -bit fingerprint . The range and domain of hf depend on which ACF is used and may
depend on the internal state of F ; we provide details below. Following previous results on filters [3–5,10,11,17],
this paper assumes free access to uniform random hash functions.5

When a set S is stored in F , for each element xi ∈ S, the fingerprint of xi is stored in one of the slots of
bin B(xi) in the βith hash table; this bin is defined using a location hash: B(xi) = h`βi(x) for some integer
0 ≤ βi < k. We say a slot σ is occupied if the fingerprint of some xi ∈ S is stored in σ; otherwise σ is
empty . We call βi the hash index of xi.

Since an ACF stores each element using a hash index, we can keep track of the internal state of a filter
using the hash index of each element. Thus, we use C = (C[1], C[2], . . . , C[n]) = (β1, . . . , βn) to define
the configuration of F . This fully defines the internal representation of a Cuckooing ACF. The internal
representation of a Cyclic ACF also depends on s metadata bits stored for each element, and the internal
representation of a Swapping ACF also depends on which slot within the bin is used to store each element.

Suppose S is stored using hash indices β1, . . . βn. Then query q /∈ S collides with an element xi ∈ S
under configuration C when h`βi(xi) = h`βi(q) and q and xi have the same fingerprint.

2.2 Cuckoo Filter Operations

We begin by describing how inserts and queries work for an ACF. The Cuckooing ACF and Swapping ACF
insert and query using these methods; the Cyclic ACF uses a generalization of these methods.

Insert. Suppose an element xi is inserted into a set S of size i − 1 currently stored with filter F in
configuration C, where elements S = x1, . . . xi−1 have hash indices β1, . . . βi−1. Assume that F can store up
to n ≥ i elements. The insertion algorithm finds a valid configuration C ′ of F on S such that there exists a
hash index β′i ∈ {0, . . . k−1} for which bin h`β′i

has an empty slot. This may involve updating the hash indices

of other elements; for 1 ≤ j < i let β′j be the hash index of x′j under C ′. We describe how to determine C ′

below.
If there is already an available empty slot, the filter stores the element immediately in that slot. Specifically,

if there exists a β ∈ {0, . . . , k − 1} where bin h`β(xi) in hash table β contains an empty slot, the filter sets
β′i = β, and stores the fingerprint of xi in the empty slot. All other slots remain unchanged: β′j = βj for all
1 ≤ j < i.

3We assume γn is an integer multiple of bk for simplicity.
4When treating the hash value as a bit string we assume that N is a power of two for simplicity; this assumption is not

necessary for the implementation.
5While such strong hashes are not useable in practice, this analysis is generally predictive of experimental results (see

i.e. [11, 17, 22]).
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Now, consider the case where there is no available empty slot. Then the ACF makes room by shifting
elements as one would in cuckoo hashing [21]. The filter selects a hash index βi arbitrarily from {0, . . . , k− 1}.
Since all slots in bin h`β′i

(xi) are occupied in C, the filter moves the fingerprint of some element xj stored in

a slot in h`β′i
(xj) = h`β′i

(xi), leaving an empty slot in which xi can be stored. If h`β(xj) contains an empty

slot for some β ∈ {0, . . . , k − 1} (i.e. if xj can be stored in an empty slot), one such empty slot is arbitrarily
selected to store xj . Otherwise, the filter increments β′j = βj + 1 (mod k) and recurses, moving an element

stored in h`β′j
(xj) as necessary.

The move the elements as described above, the ACF must be able to access the set S during an insert in
order to rehash each xj . We follow all past work on adaptive filters [2, 3, 17] in assuming that an external
dictionary can be accessed, enabling an element to be rehashed while inserting or fixing.

If this recursive process takes too many steps (more than Θ(log n) elements are moved), the filter chooses
new hashes and is rebuilt from scratch. If F uses N = O(n) hash slots, then over n inserts, the probability of
a rebuild is O(1/n) [21].

There has been a great deal of previous work on improving the above cuckoo hashing procedure with
various methods for finding the best slots to store each element, see i.e. [1, 12,13,15,19].

Notice that the procedure we describe does not use “partial-key” cuckoo hashing, as in the original cuckoo
filter of Fan et al. [11]. The ability to access S (necessary for adaptivity [3]) means that elements can be
moved based on an entirely new hash.

Query. On a query q, a filter F in configuration C returns present if there exists a β and a slot index
σ ∈ {1, . . . b} such that slot σ in bin h`β(q) of table β is occupied and stores the fingerprint of q. This
immediately guarantees correctness of the filter (queries to xi ∈ S always return present) and, via a union
bound over the elements of S, a false positive rate of at most n/(N2f ). The filter achieves a desired false
positive rate ε by setting f = log(n/(Nε)) = log(bk/εγ).

Fixing false positives. If an ACF returns present on a false positive query q (the filter knows that q /∈ S
from the external dictionary storing S), the ACF modifies its configuration to attempt to fix q, so that
subsequent queries to q return absent. Each type of ACF has its own method for fixing false positives, which
we describe below. Notice that the process of modifying the configuration may cause some query q′ /∈ S to
become a false positive, even if q′ was fixed some time in the past.

2.3 Cuckooing ACF

The primary data structure contribution of this paper is the Cuckooing ACF . This data structure is a
standard Cuckoo Filter [11] with an added operation to fix false positives; inserts and queries work exactly as
described in Section 2.2.

Let q be a false positive under configuration C; we define how the Cuckooing ACF finds a new configuration
C ′ with hash indices β′1, . . . β

′
n to attempt to fix q. For each xi ∈ S that collides with q under C, the filter

moves xi recursively as it would during an insert. Specifically, the filter sets the new hash index β′i = βi + 1
(mod k); if bin h`β′i

(xi) in table β′i does not contain an empty slot, an element xj stored in h`β′i
(xi) under C

is moved recursively. If more than Ω(log n) steps are taken, the filter is rebuilt. Standard Cuckoo Hashing
analysis shows that for any insert on a Cuckooing ACF with γ = 1 + Ω(1) a rebuild occurs with probability
O(1/n2) [21].

2.4 Cyclic ACF

The cyclic ACF of Mitzenmacher et al. [17] is an ACF where each slot contains s additional hash selector
bits. The cyclic ACF generally has b = 1; thus, the total space used by a Cyclic ACF is kN(f + s). Usually,
s is a small constant.

In the Cyclic ACF, the fingerprint hash maps U × {0, . . . , 2s − 1} → {0, . . . , 2f − 1}. In particular, the
hash selector bits are used to determine the fingerprint of an element stored in a given slot.
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When an element xi is initially inserted, the insertion process continues as in Section 2.2, with fingerprint
hf (xi, 0). When an empty slot σ is found that can store xi, the hash selector bits of σ are set to 0, and
hf (xi, 0) is stored in σ.

To query an element q, for each location hash h`β , with β ∈ {0, . . . , k − 1}, the filter looks at the slot h`β
of table β. The s hash selector bits stored in the slot contain a value 0 ≤ α ≤ 2s − 1. The filter compares
hf (q, α) with the fingerprint stored in the slot; the filter returns present if they are equal. Otherwise the
filter increments β and repeats. If no collisions are found for all 0 ≤ β ≤ k − 1, the filter returns absent.

If a query q is a false positive, the Cyclic ACF fixes the query as follows. Let xi be the element that
collides with q, let σ be the slot storing xi, and let α be the value of the s hash selector bits stored in σ.
Then the filter sets the hash selector bits of σ to store value α+ 1, and stores hf (xi, α+ 1) in σ. If multiple
x ∈ S collide with q, this procedure is repeated for each such x.

2.5 Swapping ACF

The idea of the Swapping ACF (of Mitzenmacher et al. [17]) is to have elements hash to bins with b > 1
slots, and to have the fingerprint of an item depend on the slot it is stored in. In this way, elements can be
(potentially) fixed by moving them to a different slot.

Inserts proceed as described in Section 2.2. However, in the Swapping ACF, the fingerprint hash maps
U ×{0, . . . , b− 1} → {0, . . . , 2f − 1}. During an insert, the slot storing an element must be determined before
its fingerprint can be calculated.

If a query q is a false positive under configuration C, the filter can fix the query as follows. Let xi be the
element that collides with q and let b(xi) = h`βi(xi) be the bin currently storing xi. Let σi ∈ {0, . . . , b− 1} be

the index of the slot in b(xi) currently storing xi; thus xi is stored in slot h`βi(xi) · b+ σx.
The filter picks a slot index σ′ ∈ {0, . . . , σi− 1, σi + 1, . . . b− 1}, selected at random from the slots in b(xi),

excluding the slot currently storing xi. Let xj be the element currently stored in that slot if it exists. The
filter then swaps the elements: it stores fingerprint hf (xi, σ

′) in slot h`βi(xi) · b+ σ′, and fingerprint hf (xj , σi)

in slot h`βi(xi) · b+ σi (if xj does not exist, σi becomes unoccupied).

3 Bounding the False Positive Rate by the Number of Distinct
Queries

In this section we show that the Cuckooing ACF is support optimal: it achieves strong performance against
skewed datasets, where the queries are taken from a relatively small set of elements.

Our analysis focuses on a Cuckooing ACF with k = 2 hash tables, b = 1 slots per bin, and N = n slots per
hash table6 (corresponding to the classic Cuckoo Hashing analysis). The experiments in Section 4 indicate
that our analysis likely extends to broader parameter ranges. However, formally completing the analysis for
all parameters would require significant new structural insights in our proofs (e.g. Lemma 2); we leave this to
future work.

Theorem 1. Consider a sequence of at most n queries q1, . . . qn to a Cuckooing ACF F with k = 2 hash
tables, N = n slots per table, and fingerprints of length f = log 1/ε bits. Let Q =

⋃n
i=1{qi}. Then the expected

number of false positives incurred by F while querying q1, . . . , qn is ε|Q|+O(ε2|Q|+ log4 n).

Thus, for any sequence of n queries with a support of size |Q| = ω(log4 n/ε), the Cuckooing ACF is
support optimal.

In contrast, for a worst-case input sequence, the Cyclic ACF and the Swapping ACF do not perform much
better than a Cuckoo Filter. Taking the Cyclic ACF as an example, consider a sequence of n queries, each
chosen uniformly at random from a randomly-selected set of size |Q| = 1/ε2

s

. Each of these queries collides
with some x ∈ S under every choice of hash selector bits with probability Ω(ε2

s

). Thus, over n queries, the

6That is to say, γ = 2.
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Cyclic ACF incurs Ω(n) false positives for constant ε and s, compared to O(log4 n) false positives for the
Cuckooing ACF via Theorem 1. See the proof of Theorem 9 for a more detailed explanation.

3.1 Proof of Theorem 1

Without loss of generality we assume that each false positive query only collides in one of the hash tables.
Since k = 2, fixing a query that collides in both hash tables can be simulated by executing the fixing function
for each hash table separately.

To simplify notation, we define B(i, C) = h`C[i](xi) to be the bin storing xi under configuration C, and

B′(i, C) = h`1−C[i](xi) to be the alternate bin that can store xi. Because b = 1 for this analysis, we can refer

to “slot” B(i, C) and “bin” B(i, C) equivalently.
Let C0 be the configuration of F before the first query q1, and for 1 ≤ i ≤ n let Ci be the configuration

after query qi. For each 1 ≤ i ≤ n, if qi is a false positive under Ci−1, let ki be the number of elements
moved when fixing query qi; otherwise let ki = 0. We denote the sequence of elements moved when fixing qi
as xi1 , xi2 , . . . , xiki . Thus, qi collides with xi1 under Ci−1. We call the sequence of slots affected by these

movements B(i1, Ci−1), B(i2, Ci−1), . . . B(iki , Ci−1), B′(iki , Ci−1) the path on Ci−1 of qi.
7

We say that qi loops if one of the moved elements repeats; i.e. there exist 1 ≤ `1 < `2 ≤ ki such that
i`1 = i`2 . Interestingly, classic Cuckoo Hashing analysis generally only needs to bound the number of queries
that loop twice, as only twice-looping queries force a rebuild. However, even a query that loops once cannot
be fixed in a Cuckooing ACF, so we must bound how frequently this happens in our analysis.

Let the initial false positives be the queries in Q that are false positives for F in configuration C0. For
a fixed C, F , and Q, we denote the set of initial false positives as

F0(C,F , Q) = {q ∈ Q | q is a false positive for F under C0}.

Fixing C, F , and Q, we refer to F0 := F0(C,F , Q).
We start with a structural lemma: the elements moved when fixing any query consist of a (possibly

empty) sequence of elements stored in the slot they occupied in C0, followed by a (possibly empty) sequence
of elements not stored in the slot they occupied in C0.

Lemma 2. If a query qi on a configuration Ci−1 moves an element xi` satisfying Ci−1[i`] 6= C0[i`], and qi
does not loop, then all j with ` ≤ j ≤ ki satisfy Ci−1[ij ] 6= C0[ij ].

Proof. This proof is by induction on j; the base case j = ` is satisfied by assumption.
Assume by induction that Ci−1[ij−1] 6= C0[ij−1] for some j > `. Since qi does not loop, when xij−1

is
moved, it cannot have been moved previously while fixing qi, and thus must be stored in slot B(ij−1, Ci−1).
Then after xij−1

is moved it must be stored in slot B(ij−1, C0); this must be equal to the slot storing xij .
Because qi does not loop, xij must be stored where it was when the fixing began; i.e. in B(ij , Ci−1). Thus
B(ij , Ci−1) = B(ij−1, C0), so C0[ij ] 6= Ci−1[ij ], as otherwise xij and xij−1 would be stored in the same slot
in C0.

Lemma 2 immediately gives structure to the problem in two key ways. First, it limits how queries can
break one another: if q is a false positive, but is not an initial false positive, then there must be some initial
false positive qi that caused q to become a false positive. We do not need to worry about non-initial false
positives causing other, new false positives. Second, it ties the behavior of all elements to how they behave
on the initial configuration C0. This means that we can make statements about how queries interact using
C0; we do not need to reset our analysis every time the filter configuration changes.

Our analysis depends heavily on how queries behave on configuration C0, so we introduce notation to
help discuss queries on C0. Let k0i be the number of elements moved when querying qi on configuration C0.
Let xi′1 , xi′2 , . . . xi′k0

i

be the set of elements moved when fixing qi, if qi were queried on configuration C0.

7The final term B′(iiki
, Ci−1) denotes that the last element is swapped to a new position, and does not “cuckoo” any further

elements.
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We now define the notion of costly queries. In short, costly queries are either difficult to fix, or break
other queries. However, costly queries will prove to be rare, and will not substantially increase the total
number of false positives.

A query qi is a costly query if qi is a false positive on Ci−1 and qi meets one of the following criteria.
We refer to these as Criteria 1-4 in our analysis.

1. If qi is an initial false positive, then there exists a qj such that the path of qj when queried on C0

collides with the path of qi when queried on C0; if qi is not an initial false positive, then there exists
a qj such that the path of qj when queried on C0 is hashed to by qi. In other words, if qi ∈ F0 there
exists a qj ∈ F0 \ {qi}, and a pair of indices `j , `i with 1 ≤ `j ≤ k0j and 1 ≤ `i ≤ k0i and a hash index

β ∈ {0, 1} where h`β(xj′`j
) = h`β(xi′`i

); if qi /∈ F0 then there exists a qj ∈ F0 \ {qi} and an index `j with

h`C0[`j ]
(qi) = h`C0[`j ]

(xj′`j
).

2. qi loops when queried on Ci−1.

3. There exists a false positive qj ∈ Q that loops on Cj−1 and whose path contains a slot that qi hashes
to. In other words, there exists a qj ∈ Q that loops on Cj−1, an integer 1 ≤ ` ≤ kj , and a hash index
β ∈ {0, 1} such that B(j`, Cj−1) = h`β(qi) or B′(j`, Cj−1) = h`β(qi).

4. qi hashes to a slot along its own path (excluding the slot storing the first moved element): thus, there
exists a 1 ≤ ` ≤ ki such that B′(i`, Ci−1) = h`1−Ci−1[i`]

(qi).

To begin, we show that all all false positives queries are either an initial false positive, or a costly query.

Lemma 3. Let qi be a false positive on Ci−1 for filter F . Then qi ∈ F0 or qi is costly.

Proof. Assume that qi is a false positive with qi /∈ F0; we show that qi is costly. Let 1 ≤ j < i be the smallest
j such that qi is a false positive under Cj (j must exist because qi is a false positive under Ci−1, but qi is not
an initial false positive). If qj loops, then qi is costly by Criterion 3.

Now, assume qj does not loop. There must be some xj` moved by qj (when queried on Cj−1) such
that qi collides with xj` in Cj . Since qi is not an initial false positive and qj does not loop, we must have
that qi collides with xj` when xj` is stored in slot B′(j`, Cj−1) = B′(j`, C0). However, this means that
Cj−1[j`] = C0[j`], and therefore Cj−1[j1] = C0[j1] as otherwise we reach a contradiction with Lemma 2. This
means that qj is an initial false positive, and thus qi is costly by Criterion 1.

We bound the cost of all queries using a potential function argument. The potential of a configuration
is the number of elements x ∈ S stored in their original position that collide with an initial false positive.
Specifically, for all 0 ≤ t ≤ n, define

Φ(t) =

∣∣∣∣{xi ∈ S, q ∈ F0 | xi collides with q under Ct and C0[i] = Ct[i]}
∣∣∣∣.

Let the amortized cost of query qi be 1 + Φ(i)− Φ(i− 1) if qi is a false positive, and Φ(i)− Φ(i− 1) if
qi is not a false positive. Summing (and taking Φ(n) ≥ 0), the expected number of false positives incurred
during the queries on q1, . . . , qn is at most the expected number of amortized false positives plus E[Φ(0)].
The proof proceeds in three parts: first, bounding E[Φ(0)], then bounding the cost of queries that are not
costly, and finally bounding the cost of costly queries.

The expected potential before any queries follows immediately from linearity of expectation and f =
log(1/ε).

Lemma 4. E[Φ(0)] ≤ ε|Q|

Proof. For a given xi ∈ S and q ∈ Q, the probability that hC0[i](xi) = hC0[i](q) is at most ε/n. Summing
over the |Q|n pairs obtains E[Φ(0)] ≤ ε|Q|.
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Now we show that non-costly queries have no amortized cost. This is immediate for any qi that is not a
false positive. For a non-costly false positive qi, we show that this cost is offset by a decrease in potential
from moving xi1 .

Lemma 5. If a query qi is not costly, then the amortized cost of qi is at most 0.

Proof. If qi is not a false positive, then no elements are moved, and Φ(i) = Φ(i− 1). Thus the amortized cost
of a query that is not a false positive is 0.

If qi is a false positive but is not costly, then qi is an initial false positive by Lemma 3; furthermore qi
does not loop by Criterion 2. Since qi is an initial false positive, moving xi1 decreases Φ by 1 (qi does not
collide with xi1 in its new position by Criterion 4 and xi1 is not moved again while fixing qi because qi does
not loop by Criterion 2).

We now show that this is the only change to Φ. Assume the contrary: there is a qj ∈ F0 and an ` ≤ ki such
that xi` collides with qj under Ci, and Ci[i`] = C0[i`]. By Lemma 2, since qi does not loop we can partition
the elements moved by qi into at most two sequences of elements: the possibly-empty sequence xi1 , . . . xiλ ,
and the sequence xiλ+1

, . . . xiki where for all κ ∈ {1, . . . , λ}, Ci[iκ] 6= C0[iκ], and for all κ ∈ {λ+ 1, . . . , ki},
Ci[iκ] = C0[iκ]. Thus, ` > λ. Recall that j′1, . . . j

′
k0j

is the sequence of elements moved when querying

qj on C0. The sequence i`, i`−1, . . . , iλ+1 (notice that `, ` − 1 . . . , λ + 1 is in decreasing order) must be a
subsequence of j′1, . . . j

′
k0j

. Similarly, if i1, . . . , iλ exists it must be a subsequence of i′1, . . . , i
′
λ. If qi = qj , then

qi must be costly by Criterion 4. If qi 6= qj , then qi must be costly by Criterion 1, since if xiλ exists then
h`C0[iλ]

(xiλ) = h`1−C0[iλ+1]
(xiλ+1

), and if xiλ does not exist then h`1−C0[iλ+1]
(qi) = h`1−C0[iλ+1]

(xiλ+1
). Thus

Φ(i)− Φ(i− 1) ≤ −1, and the amortized cost of qi is at most 0.

We begin analyzing costly queries by bounding their cost in terms of their path length. Intuitively, this
bound reflects that each of the ki elements moved when fixing qi collides with an element of Q with probability
ε/n.

Lemma 6. If qi is costly, then its expected amortized cost is at most 4 + 2ε|Q|ki/n.

Proof. We upper bound the difference in Φ using a very pessimistic case: if some moved element xi` collides
with some q′ ∈ F0 under some hash hβ , then we assume that xi` collides with q′ under Ci but not Ci−1. This
leads to the bound

E [Φ(i)− Φ(i− 1)] ≤ E
[ ki∑
`=1

|{q ∈ F0 | hβ(q) = hβ(xi`) for some β ∈ {0, 1}}|
∣∣∣∣ qi is costly

]
.

If the path of qi collides with the path of qj (under Criterion 3), then xj1 may collide with qj under Ci
and C0; the same holds if the path of qi collides with the path of qj when queried on C0 (under Criterion 1).
If qi hashes to a slot along its path, it may collide with the moved element under both C0 and Ci. If qi loops
(under Criterion 2), then qi collides with xi1 under Ci−1 and may collide with xi1 under Ci and C0; however
this does not increase Φ. We sum to obtain a (loose) upper bound of 3 collisions from the cases listed in this
paragraph.

For any other pair (q′, λ) where q′ ∈ F0 and λ ∈ {1, . . . ki}, q′ and xiλ collide under β with probability
ε/n for each hash index β ∈ {0, 1}. Summing via union bound over all q′, λ, β obtains

E
[ ki∑
`=1

|{q ∈ F0 | hβ(q) = hβ(xi`) for some β ∈ {0, 1}}|
∣∣∣∣ qi is costly

]
≤ 3 + (2ki|Q|)(ε/n)

Adding in the cost of the false positive qi, the expected amortized cost of qi is at most 4 + 2ε|Q|ki/n.

The following lemma is dedicating to bounding the increase in potential from costly queries that satisfy
Criterion 1. These are by far the most common and expensive costly queries, so our analysis of this case
needs to be tight up to (essentially) constants to obtain our desired bounds. That said, we did not focus on
minimizing the constants themselves.
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Lemma 7. Assume that all initial false positives qi ∈ F0 satisfy k0i = O(log n). Then the expected number of
queries satisfying Criterion 1 is at most 8|F0|2/n + 2ε|Q||F0|/n. Furthermore,

E[ki | qi satisfies Criterion 1] ≤ 96.

Proof. We begin by bounding the number of queries qi ∈ F0 that satisfy Criterion 1. Taking a union bound,
for any qj ∈ F0, the probability that an element moved when querying qi shares a slot with an element moved
when querying qj is k0i k

0
j/n. So long as qi and qj are moving distinct elements when being fixed under C0, the

hashes of each element are independent, and therefore the number of elements each moves is independent.8 If
qi and qj ever move the same element, they satisfy Criterion 1 and we are done. Thus, we can upper bound
the expected number of pairs qi, qj ∈ F0 satisfying Criterion 1 by

∑
qi,qj∈F0

E[k0i k
0
j ]/n.

From [21, Section 3.1.2] we have (in the notation of this paper, and recalling that the filter may access
fully random (i.e. (1, n)-universal) hash functions, and recalling that we assume that qi and qj collide with at

least one element), Pr[k0i = k̂] ≤ 2(1/γ)−k̂−1 = 22−k̂ for k̂ ≥ 1. As above, we can assume that k0i and k0j are
independent for the purpose of our upper bound. Summing,

E[k0i k
0
j ] ≤

∞∑
k0i=1

∞∑
k0j=1

(k0i )(k0j )22−k
0
i 22−k

0
j

= 16

∞∑
k0i=1

(k0i )2−k
0
i

 ∞∑
k0j=1

(k0j )2−k
0
j


≤ 32

∞∑
k0i=1

(k0i )2−k
0
i ≤ 64

Thus, the expected number of pairs that satisfy Criterion 1 is at most 64|F0|2/n for n ≥ 64.
We now consider the case when qi /∈ F0. This means that qi must hash to the same slot as an element

moved by some qj when qj is being fixed on C0; for a given element this occurs with probability ε/n. This
means that the probability that qi satisfies Criterion 1 is at most

∑
qj∈F0

εk0j/n. Summing obtains 2ε|Q||F0|/n
expected false positives over all qi ∈ Q.

Finally, we bound E[ki | qi satisfies Criterion 1]. By definition,

E[ki | qi satisfies Criterion 1] =

∞∑
k′=1

k′ Pr[ki = k′ | qi satisfies Criterion 1]

=
Pr[ki = k′ and qi satisfies Criterion 1]

Pr[qi satisfies Criterion 1]

As above,

Pr[ki = k′ and qi satisfies Criterion 1] ≤ k′22−k
′ ∑
qj∈F0

∞∑
k0j=0

k0j22−k
0
j /n

≤ 4k′2−k
′
|F0|

∞∑
k0j=0

k0j2−k
0
j /n

≤ 8|F0|k′2−k
′
/n

8Strictly speaking, these events are not independent. After all, if k0i = n, then k0j is very likely to be Ω(n). However, since we

assume k0i = O(logn) and k0j = O(logn), only O(logn) hash table slots are touched by either path; this affects the expectation

of each by at most O((logn)/n).
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A lower bound for Pr[qi satisfies Criterion 1] is the event that h`1−C[j1]
(qi) = h`1−C[j1]

(xj1). This occurs with

probability 1− (1− 1/n)
|F0| ≥ 1− 1/2|F0|/n. Thus,

E[ki | qi satisfies Criterion 1] =

∞∑
k′=1

k′ Pr[ki = k′ | qi satisfies Criterion 1]

≤
∞∑
k′=1

k′
8|F0|k′2−k

′
/n

1− 1/2|F0|/n

≤ 8
|F0|/n

1− 1/2|F0|/n

∞∑
k′=1

k′22−k
′

≤ 16

∞∑
k′=1

k′22−k
′
≤ 96

Now we bound the total cost of all costly queries. The additive polylog term is due to applying tail
bounds to rare but problematic events like looping queries—it is possible that a sufficiently involved analysis
of these events would reduce or remove this term.

Lemma 8. For any sequence of queries q1, . . . , qn

E

 ∑
qi is costly

1≤i≤n

(4 + 2ε|Q|ki/n)

 ≤ O(ε2|Q|2/n+ log4 n).

Proof. From classic Cuckoo Hash analysis, ki = O(log n) for all i with probability at least 1 − 1/n (see
i.e. [21]). We upper bound the number of costly qi by summing the expected number of qi meeting each
criterion. Assume that ki = O(log n) and k0i = O(log n) for all i (if not, then at most all n queries are false
positives; since this edge case happens with probability ≤ 2/n this adds 2 to the expected cost).

Criterion 1: From Lemma 7, the expected number of queries satisfying Criterion 1 is at most 8|F0|2/n+
2ε|Q||F0|/n. Substituting E[ki | qi satisfies Criterion 1] ≤ 96 in Lemma 6, each of these queries costs at most
(3 + 192ε|Q|/n) = O(1); thus the total cost is O(|F0|2/n+ ε|Q||F0|/n).

To bound E[|F0|2], notice that this expression represents the square of the sum of |Q| independent Bernoulli
trials, each of which succeeds with probability ε. Thus, the variance of |F0| is ε|Q|(1 − ε); substituting
E[|F0|] = ε|Q| into Var(X) = E[X2] − (E[X])2 obtains E[|F0|2] ≤ ε2|Q|2 + ε(1 − ε)|Q|. By linearity of
expectation, E[|Q||F0|/n] ≤ ε|Q|2/n. Summing obtains a total cost of O(ε2|Q|2/n).

Criterion 2: Query qi loops if and only if there exists an element xi` (with 1 ≤ ` ≤ ki) such that the
second hash location of xi` collides with another one of the ki slots containing elements moved by qi. For a
given slot σ, the probability that h`Ci[i`](xi`) = σ is 1/n. Taking a union bound, qi loops with probability

at most k2i /n. Summing over all 2n queries, the expected number of queries that loop is O(log2 n). Since
ki = O(log n), Lemma 6 gives that each costs O(log n), giving a total cost of O(log3 n).

Criterion 3: If there are L queries that loop, since each looping query moves O(log n) elements, the
probability that qi collides with any element moved by a looping query is O(L log n/n). By linearity of
expectation, since E[L] = O((log n)2) (shown in the proof for Criterion 2), summing over all qi, at most
O(log3 n) queries meet Criterion 3 in expectation. Using Lemma 6 obtains a total cost of O(log4 n).

Criterion 4: Each element xi` moved when querying qi, from 1 ≤ ` ≤ ki, hashes to the same slot as qi
with probability 1/n; thus qi collides with an element after it is moved with probability O(log n)/n. Summing
over all queries, there are O(log n) queries that are costly in expectation by Criterion 4; using Lemma 6
obtains a total cost of O(log2 n).

Summing, all costly queries have a total cost of O(ε|Q|2/n+ log4 n).

Summing the starting potential cost (Lemma 4), the total amortized cost of all queries that are not costly
(Lemma 5), and the total amortized cost of all costly queries (Lemma 8), we obtain Theorem 1.
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4 Experiments

In this section, we examine how the Cuckooing ACF performs on network trace datasets. There are two main
takeaways from this section. First, the design of the Cuckooing ACF results in better practical performance
than previous adaptive filters on network trace datasets. Second, the analysis of Section 3 extends to practice:
an adaptive cuckoo filter with practical parameter settings (including very high load factor) still achieves
strong performance.

 0.001

 0.01

 0.1

 0  10  20  30  40  50  60  70  80  90  100

Fa
ls

e
 P

o
si

ti
v
e
 r

a
te

A/S ratio

Chicago A, f=8

Cuckoo Filter
Cuckooing ACF
Swapping ACF

Cyclic ACF s=1
Cyclic ACF s=2
Cyclic ACF s=3

 0.001

 0.01

 0.1

 0  10  20  30  40  50  60  70  80  90  100

Fa
ls

e
 P

o
si

ti
v
e
 r

a
te

A/S ratio

Chicago B, f=8

Cuckoo Filter
Cuckooing ACF
Swapping ACF

Cyclic ACF s=1
Cyclic ACF s=2
Cyclic ACF s=3

 0.001

 0.01

 0.1

 0  10  20  30  40  50  60  70  80  90  100

Fa
ls

e
 P

o
si

ti
v
e
 r

a
te

A/S ratio

San Jose, f=8

Cuckoo Filter
Cuckooing ACF
Swapping ACF

Cyclic ACF s=1
Cyclic ACF s=2
Cyclic ACF s=3

 1

 1.5

 2

 2.5

 3

 0  10  20  30  40  50  60  70  80  90  100

N
o
rm

a
liz

e
d
 F

a
ls

e
 P

o
si

ti
v
e
 r

a
te

A/S ratio

Comparative Filter Performance

Figure 1: We examine the false positive rate of each adaptive filter, varying the ratio of the number of queries
to the number of stored elements. The bottom right figure normalizes the false positive rate by the number
of false positives incurred by the Cuckooing ACF. It summarizes the results for the Swapping ACF and the
Cyclic ACF with s = 1, for all three datasets, for f = 8, 12, 16.

Our experiments use three network traces from the CAIDA 2014 dataset, specifically:

• equinix-chicago.dirA.20140619 (which we call “Chicago A”)
• equinix-chicago.dirB.20140619-432600 (“Chicago B”), and
• equinix-sanjose.dirA.20140320-130400 (“San Jose”)

following the experiments of Mitzenmacher et al. in [17]. In each test, the elements stored in the filter and
the query elements both come from the network trace. Let A be the set of query elements. We perform tests
for different |A|/|S| ratios; specifically |A|/|S| = {1, 3, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100}.

We begin by setting n = |S| using the prescribed |A|/|S| ratio and the total number of unique flows in
the trace—in particular, n = (# unique flows)/(1 + |A|/|S|). The first n unique flows seen in the trace are
inserted into each filter. The remaining flows in the trace (those not in S) are used as queries.

We consider six data structures in our experiments:

• a classic Cuckoo Filter, with k = 4 hash tables and b = 1 slots per bucket;

• the Cuckooing ACF, with k = 4 hash tables and b = 1 slots per bucket;
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• three implementations of the Cyclic ACF described in [17], with s = 1, s = 2, and s = 3 hash selector
bits. To ensure a fair comparison in space usage, each hash selector bit used is accounted for with a
corresponding decrease in the number of fingerprint bits (for example, a Cuckoo Filter with fingerprints
of length 8 is compared to a Cyclic ACF with fingerprints of length 7 and s = 1 hash selector bit); and

• a Swapping ACF as described in [17], with b = 4 slots per bin and k = 2 hash tables.

All filters are at 95% occupancy in all of our experiments (i.e. γ = 1/.95). We give results for fingerprints
of length f = 8 bits on Chicago A, and summarize key results for Chicago B and San Jose, as well as results
with f = 12 and f = 16 bits on all datasets. We repeat each experiment 10 times; all results given are the
average performance over these 10 trials.

4.1 Experimental Results

The three plots in Figure 1 excluding the bottom-right plot show that the Cuckooing ACF has the strongest
performance of all adaptive filters on network trace datasets with fingerprints of size f = 8. The left hand
plot in Figure 1 show that the Cuckooing ACF has the strongest performance of all adaptive filters on the
Chicago A dataset with f = 8. Its performance is particularly strong for low values of |A|/|S|—that is to
say, its performance is strong when the number of queries is small relative to n (as one may expect given
Theorem 1).

We ran further experiments, using fingerprints of size f = 8, f = 12, and f = 16 on Chicago A, Chicago B,
and San Jose datasets, achieving similar (in fact slightly better) results. These experiments are summarized in
the right hand plot of Figure 1; we also give full results in Appendix B. The y-axis in this figure indicates the
false positive rate of the given filter divided by the false positive rate of the Cuckooing ACF. This plot only
includes the two best filters: the Swapping ACF, and the Cyclic ACF with s = 1. We run the experiments
for three fingerprint sizes {8, 12, 16} on all three datasets, giving 18 total lines in the plot. Note that there
is some overlap with the left hand plot—one of the bottommost two lines in the plot correspond to the
Swapping ACF with f = 8 on Chicago A. Specifically, the Cuckooing ACF does even better with larger
fingerprints like f = 12 and f = 16 compared to f = 8.

Overall, the Cuckooing ACF always performs at least as well as every other cuckoo filter on these datasets,
frequently outperforming them by nearly a factor of 2.

We believe that the simplicity of the Cuckooing ACF is, in fact, the source of this performance improvement.
The Swapping ACF uses two bins of size 4, so each query is compared to twice as many fingerprints as in the
Cuckooing ACF or Cuckoo Filter.9 Meanwhile, the adaptivity bit of the Cyclic ACF causes each fingerprint
to be one bit shorter, again doubling the false positive rate. Thus, the simple swapping strategy means we
can avoid metadata bits with b = 1, giving the Cuckooing ACF has an immediate factor-2 advantage over its
competitors.

5 Adersarial Adaptivity

Previous work leaves a dichotomy: the Adaptive Cuckoo Filters of Mitzenmacher et al. [17] work well in
practice, whereas the “Broom Filter” of Bender et al. [3] is effective even against an adversary that tries to
“learn” a filter’s internal state. In Sections 3 and 4 we showed that the Cuckooing ACF is practical while
retaining theoretical bounds. But our theoretical bounds are not adversarial; they are based on the number of
unique queries made to the filter. Can our results be taken further—is there an ACF that adapts effectively
even against an adversary?

In this section we give a general lower bound showing that an adversary can obtain a false positive rate of
Ω(1) against any space-efficient ACF. This result is closely tied to a key structural distinction: the Broom
Filter is difficult to implement because the length of the stored fingerprint may be different for each element.
Our lower bound shows that this flexibility is, in fact, necessary in order to achieve adaptivity.

9If the bins are decreased in size to, say, 2, the Swapping ACF requires extremely frequent rebuilds with the desired load
factor—the factor-2 decrease in efficiency is intrinsic to the Swapping ACF.
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5.1 Definition

Bender et al. [3] defined a notion of adaptivity that captures a worst-case adversary attempting to maximize
the filter’s false positive rate. We summarize this model in this subsection, and refer readers to [3] for a more
thorough discussion.

In the adaptivity game , an adversary generates a sequence of queries. After each query q, the adversary
and filter both learn if q was a false positive. The filter may change its internal representation in response.
The adversary will use whether or not q was a false positive to determine the further queries.

At any time, the adversary may name a special element q̂—the adversary is asserting that this query is
likely to be a false positive. The adversary “wins” if q̂ is a false positive, and the filter “wins” if q̂ is not a
false positive.

The sustained false positive rate of a filter is the maximum probability ε with which the adversary
can win the adaptivity game. We call a filter F adaptive if F can achieve a sustained false positive rate of ε
for any constant ε.

5.2 Lower Bounds

To begin, we note that the Cyclic ACF is not adaptive. A nearly-identical proof shows that the Swapping
ACF is not adaptive.

Theorem 9. Let F be a Cyclic ACF with k = O(1) hash tables, each with N = Θ(n) slots. Then there exists
an adversarial strategy, making Θ(2s/ε2

s

) queries, which wins the adaptivity game against F with probability
Ω(1). Thus the sustained false positive rate of F is Ω(1).

Proof. The adversary begins by selecting a query element q1 at random. The adversary queries q1 2s times.
If q1 is a false positive every time it is queried, the adversary sets q̂ ← q1; otherwise the adversary chooses a
new query element q2 and repeats. This process is repeated until O(1/ε2

s

) query elements have been chosen,
requiring O(2s/ε2

s

) queries overall.
We show that the adversary finds a q̂ with probability Ω(1), and that q̂ will be a false positive with

probability 1.
Each time q collides with an element xi ∈ S, the hash selector bits associated with xi are incremented;

thus, if q does not collide with xi on the jth query, it will not collide on the j′th query for j′ > j. Then if q is
a false positive on all 2s collisions, there is an xj ∈ S such that hf (q, α) = hf (xj , α) for all α ∈ {0, . . . , 2s− 1}.
We immediately obtain that any q̂ found by the adversary is a false positive with probability 1.

We now bound the probability that q̂ is found. For a given query element qi and a given element xj ∈ S,
the probability that h`βj (qi) = h`βj (xj) is 1/n. The probability that, for all α, hf (qi, α) = hf (xj , α) is 1/ε2

s

.

Thus, after the algorithm has considered 1/ε2
s

query elements, the probability that there exists a query

element q′ and an x∗ ∈ S such x∗ causes q′ to be a false positive 2s times is 1 − (1 − ε2s/n)n/ε
2s

= Ω(1).
Thus, the adversary finds a q̂ with constant probability.

We can also show that the Swapping ACF is not adaptive; this proof is essentially identical to that of
Theorem 9.

Theorem 10. Let F be a Swapping ACF with N = Θ(n) slots. Then there exists an adversarial strategy,
making Θ(b/εb) queries, which wins the adaptivity game against F with probability Ω(1).

One might think that hashing elements to another bucket (as is done in the Cuckooing ACF) is sufficient
to make a filter adaptive. The reason Theorem 9 gives such a strong lower bound for the Cyclic ACF is that
when we move an element to the next fingerprint, it is still a false positive with probability ε. A constant
number of these movements still leaves a significant probability that a false positive is not yet fixed. In
contrast, when a colliding element is moved in the Cuckooing ACF, it still collides with the query with
probability only ε/n—this seems low enough that almost all queries are successfully fixed after only a single
movement.
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Nonetheless, the adversary can use a birthday attack to find a small set of elements that cannot all be
simultaneously fixed.

We obtain lower bounds for a fairly broad class of filters, where the total total information stored (i.e. hash
index plus location plus fingerprint) for each element is at most log(n/ε) +O(1) bits. This stands in contrast
to the Broom Filter of Bender et al. [3], which is adaptive and which stores an average of log(n/ε) +O(1)
bits—in short, this proof shows that the nonuniformity of hash lengths in [3] is crucial to achieving adaptivity.

Definition 11. A deterministic k-adaptive filter F on n elements with false positive rate ε is a filter satisfying
the following:

• F has access to k uniform random hash functions h0, . . . , hk−1. Each hash has length at most log(N/ε),
for some N = O(n/k) with N ≥ n/k.

• For every configuration C of F , each xi ∈ S is stored using at least one hash hC[i](x), 0 ≤ C[i] ≤ k− 1.

• The filter answers present to a query q on configuration C if there exists an xi such that hC[i](q) =
hC[i](xi). Otherwise, it answers absent.

• On a false positive q, F updates C to a new configuration C ′ in round-robin order. In particular, if a
query q collides with an element xi ∈ S stored using hβ, then xi is stored in C ′ using hβ′ satisfying
β′ = β + 1 (mod k).

By setting each hash hi in Definition 11 so that for any i ∈ {0, . . . , k − 1} and x ∈ U , hi(x) is the
concatenation of h`i(x) and hf (x, i), the Cuckooing ACF is a deterministic k-adaptive filter. By setting
h(i,α)(x) to be the concatenation of h`i(x) and hf (x, α), the Cyclic ACF is a deterministic k2s-adaptive
filter.10

The round-robin ordering requirement stands out as being a bit artificial, but our proof can fairly easily
be generalized to handle other deterministic methods to update the configuration.

Theorem 12. There exists an adversarial strategy making O(n) queries such that, for any deterministic
k-adaptive filter F with k < log n/6 log log n and ε > 1/(n1/k), the adversary wins the adaptivity game with
probability Ω(1).

The rest of this section proves Theorem 12.

Querying to Find a Mutually Unfixable Set. The proof of Theorem 12 begins with the adversary
searching for a structure that “blocks” the filter, preventing it from fixing a false positive.

Consider a stored element xi ∈ S, and fix a filter F with k hash functions h0, . . . hk−1. A set of queries K
is called mutually unfixable for xi if

• for all β ∈ {0, . . . , k − 1}, there exists a q′ ∈ K such that hβ(xi) = hβ(q′), and

• for all q′ ∈ K there exists a β,∈ {0, . . . , k − 1} such that hβ(xi) = hβ(q′).

The goal of our adversary is to find a mutually unfixable subset of the queries, as in any filter configuration,
at least one element in a mutually unfixable set is a false positive.

The adversary begins by choosing a set Q of (1 + 1/k)N/(εn1/k) queries selected uniformly at random
from U . We show that if Q is this size, then with constant probability Q will contain Θ(1) mutually unfixable
sets, each of size O(k).

The adversary then queries members of Q for 2k rounds; any query that is a false positive during the
second set of k rounds is stored in a set Qd. We show that Qd will be the union of some mutually unfixable
subsets of Q.

10Strictly speaking the Cyclic ACF does not satisfy Definition 11 because the hashes are not all independent. However, this
only increases the ability of an adversary to find false positives.
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Finally, the adversary repeatedly selects k elements from Qd and randomly selects a permutation P on
these elements. The adversary queries these elements in order, twice. We show that, over O(n) total queries,
the adversary will (with constant probability) pick k elements corresponding to a mutually unfixable set, and
query them in an order such that each is a false positive every time it is queried. With this strategy, the
adversary can find a false positive q̂ with constant probability.

For each β ∈ {0, . . . , k − 1}, let RQ(β) be the set of values hashed to by Q via hβ . In other words,
y ∈ RQ(β) when there exists q ∈ Q such that hβ(q) = y. We begin by showing that for all β, |RQ(β)| is very
close to |Q| with constant probability.

Lemma 13. Let Q be any set of elements of size (1 + 1/k)N/(εn1/k), and assume k ≤ log n/6 log log n.
Then with probability at least 1/2, min1≤β<k |RQ(β)| > |Q|/(1 + 1/k).

Proof. We say that a q ∈ Q is redundant for a hash hβ if there is a q′ ∈ Q \ {q} such that hβ(q) = hβ(q′).
Then |Q| − |RQ(β)| is upper bounded by the number of redundant q for hβ .

Via a union bound, the probability of a given query q ∈ Q hashing under a given hβ to one of the ≤ k|Q|
values hashed to by another q′ ∈ Q \ {q} is at most ε|Q|/N . Thus, we can upper bound the number of
redundant q for hβ by the sum of |Q| Bernoulli trials, each of which succeeds with probability ε|Q|/N . Then
the total number of redundant (q, hβ) in expectation is ε|Q|2/N . Using Chernoff bounds [18, Exercise 4.7],
since ε|Q|2/N ≥ N/n1/k = Ω(log n), the probability that there are more than 2ε|Q|2/N redundant pairs is at
most 1/n. Taking the union bound over all β ∈ {0, . . . , k − 1}, all R(β) have at most 2ε|Q|2/N redundant
pairs with probability k/n.

Plugging into our bound for |Q| − |RQ(β)|, we obtain that |RQ(β)| > |Q|(1 − 2ε|Q|/N) for all β with
probability ≥ 1 − k/n ≥ 1/2. (We weaken this bound to simplify.) Since k ≤ log n/6 log log n implies
n1/k > 2(k + 1)/(1 + 1/k), we have |Q| < N/(2ε(k + 1)); and therefore 1− 2ε|Q|/N > 1/(1 + 1/k).

We observe that there exists a mutually unfixable set K ⊆ Q for some xi ∈ S if and only if, for all
β ∈ {0, . . . , k − 1}, element xi hashes to an element of RQ(β) under hβ . Let XQ consist of all xj ∈ S such
that there is a Kj ⊆ Q that is mutually unfixable for xj . That is, XQ = {xj ∈ S | hβ(xj) ∈ RQ(β) for all β ∈
{0, . . . , k − 1}}. We begin by showing that XQ is nonempty with constant probability.

Lemma 14. For any deterministic k-adaptive filter F storing a set of elements S of size n, and for any set
of (1 + 1/k)N/(εn1/k) query elements Q, Q contains a K ⊆ Q such that K is mutually unfixable for some
xj ∈ S. with probability > (1− 1/e)/2.

Proof. By independence of the hashes, the probability that a given x has a mutually unfixable set is∏k
β=1(ε|RQ(β)|/N). By Lemma 13, with probability 1− 1/n, this is at least

(
ε|Q|

N(1+1/k)

)k
. Substituting for

|Q|, this means that each xi ∈ S has a mutually unfixable set with probability at least 1/2.
Thus, if Lemma 13 is satisfied, the probability that no xi has a mutually unfixable set is (1− 1/n)n ≤ 1/e.

Therefore, Q has a mutually unfixable set for some x with probability at least (1/2)(1− 1/e).

The next lemma upper bounds |XQ|; with the above we have |XQ| = Θ(1) with constant probability.

Lemma 15. For any deterministic k-adaptive filter F storing a set of elements S of size n, and any set of
(1 + 1/k)N/(εn1/k) query elements Q, let XQ be the elements of S with a mutually unfixable subset of Q.
Then with constant probability, |XQ| = O(1).

Proof. We have |RQ(β)| ≤ |Q| for all 0 ≤ β ≤ k − 1 by definition; thus, the probability that a given x has a
mutually unfixable subset is (ε|RQ|/N)k ≤ e/n. Thus, e elements xi ∈ S have mutually unfixable subsets of
Q in expectation; by Markov’s inequality there are O(1) elements in S with mutually unfixable subsets with
constant probability. Each maximal mutually unfixable set must be unfixable for some xi ∈ S, so this proves
u = O(1).

Finally, we bound the size of each mutually unfixable set.
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Lemma 16. If k < log n/6 log log n, then with constant probability, for all mutually unfixable K ⊆ Q,
k < |K| = O(k).

Proof. Consider an element xi such that some Ki ⊆ Q of size |Ki| = k is mutually unfixable for xi. A further
element q ∈ Q \Ki collides with xi (on some hash) with probability at most ε/N ; summing over |Q| < n
elements we obtain ε(n/N) < O(k) additional elements in expectation. By Markov’s inequality, there are
O(k) such elements with constant probability. From Lemma 15, there are O(1) elements x ∈ S with mutually
unfixable sets with constant probability. Therefore, this bound applies to all O(1) mutually unfixable sets
with constant probability.

To lower bound the size of these sets, we have that if the size of a set Kj that is mutually unfixable
for some xj ∈ S is less than k, there exists a q1 ∈ Kj and two hash indices β1, β2 ∈ {0, . . . , k − 1} such
that q1 collides with xj under both hβ1 and hβ2 . The probability that there exists such a pair (q1, xj) is at
most k2|Q|/n, which is much less than a constant since k < log n/6 log log n. Thus, |K| ≥ k for all mutually
unfixable K with constant probability.

5.3 Lower bound for deterministic k-adaptive filters

The adversary begins by selecting a set of (1 + 1/k)N/(εn1/k) random queries Q. The adversary performs 2k
rounds, where in each round, the adversary queries every element of Q in random order. We call the first k
such rounds the preliminary rounds, and we call the second k rounds the testing rounds.

Let Qd be the set of elements that are false positives during any of the testing rounds. If |Qd| 6= O(k),
the adversary fails.11

The adversary performs a further
(|Qd|
k

)
k! rounds, the permutation rounds. In each permutation round,

the adversary picks a random subset of Qd of size k, which we call Qr. The adversary then picks a random
permutation P of Qr. The adversary queries all elements in Qr in the order given by P , then repeats: again
querying all elements in Qr in the order given by P . If every query in these repeated queries is a false positive,
the adversary stops, and sets q̂ to be the first element in P .

We now analyze this adversary. The idea is that after the k preliminary rounds, the false positives during
the testing rounds will consist of a union of mutually unfixable subsets of Q. We prove this in the following
lemma.

Lemma 17. For any Qd obtained by the adversary, there exists a sequence of u sets K1, . . . ,Ku ⊆ Q such
that for all λ, Kλ is a mutually unfixable set for some element xi ∈ S, and Qd =

⋃u
λ=1Kλ.

Proof. First, we show that every q ∈ Qd is a member of a mutually unfixable subset K. Consider an element
xi ∈ S that does not have a mutually unfixable Ki ⊆ Q. In each round where xi collides with a false positive
of Q, xi must be moved to the next hash. After less than k movements, xi is moved to some hash hβ where
xi does not collide with any element of Q under β; that is, hβ(xi) /∈ RQ(β). After this, xi will not be moved
during subsequent queries from Q, and will not cause any elements of Q to be a false positive.

Thus, any xi without a mutually unfixable Ki ⊆ Q will not collide with any query in the testing rounds.
This means that all q′ ∈ Qd collide with an xj that has a mutually unfixable subset Ki ⊆ Q. By definition,
q′ ∈ Ki.

Now, consider a maximal mutually unfixable set K` ⊆ Q, which is mutually unfixable for some x` ∈ S.
We show that Qd contains a mutually unfixable K ′ ⊆ K`. During each round, at least one member of K`

collides with x` by definition; thus x` is moved at least k times during the testing rounds. This means that
for each β ∈ {0, . . . , k − 1}, x` collides with a q ∈ Q while being stored using hash hβ . Thus, by definition,
the set of elements that collide with x` during the testing rounds form a mutually unfixable K ′ ⊆ K`.

With the above, we show that the adversary wins the adaptivity game with constant probability.

Lemma 18. With probability Ω(1), the adversary finds a q̂ which is a false positive during the permutation
rounds.

11Specifically, for a sufficiently large constant c, the adversary fails if |Qd| > ck. The constant c gives a tradeoff between the
lower-order terms in the number of queries performed, and the constant probability that the adversary wins.
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Proof. We assume that Lemma 15 is satisfied; this happens with probability Ω(1). Combining Lemma 15
with Lemma 17, Qd consists of u = O(1) mutually unfixable sets K ′1, . . .K

′
u, each of size O(k).

Let Ki be a mutually unfixable set of an element xi ∈ S such that Ki ⊆ Qd and |Ki| = k. We analyze the
probability that, in a given permutation round, the adversary chooses Qr = Ki, and chooses a permutation
P that causes each query to be a false positive; this means that the adversary selects a q̂ with probability
Ω(1). Then we show that if the adversary selects a q̂, it is a false positive with probability Ω(1).

Fix a permutation round, and let βi be the hash index of xi at the beginning of this permutation round.
Let PKi = (q1, q2, . . . , qk) be a permutation on Ki such that for each qj , hβi+j (mod k)(qj) = hβi+j (mod k)(xi).

If PKi is selected, then all queries to PKi will be false positives, and the adversary wins the adaptivity
game with probability 1. We select Qr to consist of the members of Ki with probability 1/

(|Qd|
k

)
, and we

query them in order of PKx with probability 1/(k!). Repeating this process for
(|Qd|
k

)
k! rounds gives constant

probability of success.
Now, we show that, with constant probability, the adversary only sets q̂ for a permutation P ′ =

(q′1, q
′
2, . . . , q

′
k) if P ′ satisfies, for some x` with hash index β`, hβ`+j (mod k)(qj) = hβ`+j (mod k)(x`) for all

1 ≤ j ≤ k′. Recall that the adversary sets q̂ when the jth query to P is a false positive for all j; thus for each
qj there exists an xj ∈ S and a 0 ≤ βj < k such that hβj (qj) = hβj (xj). If xj = x` for all j then we are done.

Otherwise, let X̂ ⊆ S \ {x`} be the elements of S (other than xi) that collide with an element of Qr. If all
xj ∈ X̂ only collide with a member of Qr under a single hash function hβ (i.e. there do not exist q1, q2 ∈ Qr
and distinct β1, β2 ∈ {0, . . . , k − 1} with hβ1

(xj) = hβ1
(q1) and hβ2

(xj) = hβ2
(q2)), then xj will only be a

false positive once. Thus, all collisions in the repeated queries will collide with xi, and again we are done.
The probability that there exists an x` ∈ S and distinct β1, β2 ∈ {0, . . . , k − 1} with hβ1

(x`) = hβ1
(q1)

and hβ2
(x`) = hβ2

(q2) for some q1, q2 ∈ Qd is at most k2|Qd|2 ε
2

n2 = o(1).

The number of queries required for this adversary is, for some constant c depending on the maximum
size of Qd, O(n1−1/k/ε+ ckk!); this is O(n) since k < log n/6 log log n and ε > 1/(n1/k). This completes the
proof of Theorem 12.
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A Symbol Table

The following symbols are used throughout the paper:

Symbol Usage

S The set of elements stored in the filter
xi The ith element stored in the filter
ε The static false positive rate; used as a parameter in adaptive filters
U Universe of possible elements; all queries and stored elements are from U
Q The set of elements queried in a query sequence
h`i The ith location hash function

hfi The ith fingerprint hash function
f The size of the fingerprint
k The number of hash tables
b The number of slots per bin
N The number of bins in a hash table; N = γn/(bk)
βi The hash index of xi (i.e. the table storing xi)

B(xi) The bin storing the fingerprint of xi; B(xi) = h`βi(xi)

C A configuration of a filter, defined using the hash index of each stored element xi
C[i] The hash index of xi in configuration C
s The number of hash selector bits in a Cyclic ACF
α The value stored using the hash selector bits for a given slot
A The set of elements queried during a given experiment

The following symbols are used in the proof that the Cuckooing ACF is adaptive in Section 3:

Symbol Usage

C0 The configuration before any query is performed
Ci The configuration after query qi
ki The number of elements moved when fixing qi on configuration Ci−1

xi1 , xi2 , . . . xiki The sequence of elements moved when fixing qi on configuration Ci−1
B(i, C) The bin storing xi in configuration C; B(i, C) = h`C[i](xi)

B′(i, C) The alternate bin that can store xi in configuration C; B′(i, C) = h`1−C[i](xi)

F0 The set of initial false positives
k0i The number of elements moved when fixing qi on configuration C0

xi′1 , xi′2 , . . . xi′k0
i

The sequence of elements moved when fixing qi on configuration C0

Φ(t) The potential after query t

The following symbols are used in the lower bound (the proof of Theorem 12) in Section 5:

Symbol Usage

q̂ A special query that the adversary names as a likely false positive
RQ(β) The set of values that can be obtained by applying hash hβ to any element in Q
XQ The set of all xj such that there exists a Kj ⊆ Q that is mutually unfixable for xj
Qd The set of queries that are false positives during any of the testing rounds
Qr A random subset of Qd of sized k; this subset is queried during a permutation round
P A permutation applied to some Qr during a permutation round
PKi A permutation on a mutually unfixable set of xi with certain hash collision properties

X̂ The elements of S other than a fixed xi that collide with any element of Qr
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B Experiments On Network Traces
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Figure 2: The false positive rate incurred for each filter on the Chicago A dataset, with 8, 12, and 16
fingerprint bits.
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Figure 3: The false positive rate incurred for each filter on the Chicago B dataset, with 8, 12, and 16
fingerprint bits.
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Figure 4: The false positive rate incurred for each filter on the San Jose dataset, with 8, 12, and 16 fingerprint
bits.
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