Skip to main content

Sumcheck Arguments and Their Applications

  • Conference paper
  • First Online:
Advances in Cryptology – CRYPTO 2021 (CRYPTO 2021)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12825))

Included in the following conference series:

Abstract

We introduce a class of interactive protocols, which we call sumcheck arguments, that establishes a novel connection between the sumcheck protocol (Lund et al. JACM 1992) and folding techniques for Pedersen commitments (Bootle et al. EUROCRYPT 2016).

We define a class of sumcheck-friendly commitment schemes over modules that captures many examples of interest, and show that the sumcheck protocol applied to a polynomial associated with the commitment scheme yields a succinct argument of knowledge for openings of the commitment. Building on this, we additionally obtain succinct arguments for the NP-complete language R1CS over certain rings.

Sumcheck arguments enable us to recover as a special case numerous prior works in disparate cryptographic settings (discrete logarithms, pairings, groups of unknown order, lattices), providing one framework to understand them all. Further, we answer open questions raised in prior works, such as obtaining a lattice-based succinct argument from the SIS assumption for satisfiability problems over rings.

The full version of this paper is available at https://eprint.iacr.org/2021/333.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Thus sumcheck arguments are distinct from direct algebraic generalizations of the sumcheck protocol to rings [CCKP19].

  2. 2.

    This differs from using lattices to instantiate the collision-resistant hash function in Kilian’s PCP-based protocol [Kil92], because this would not lead to a succinct argument for computations expressed over relevant rings.

  3. 3.

    For any \(a,a' \in \mathbb {F}\) and \(\mathsf {G},\mathsf {G}'\in \mathbb {G}\) we have \((a+a')\cdot \mathsf {G}= a\cdot \mathsf {G}+a'\cdot \mathsf {G}\) and \(a\cdot (\mathsf {G}+\mathsf {G}')=a\cdot \mathsf {G}+a\cdot \mathsf {G}'\).

  4. 4.

    In the pairing setting where \({M}_{\scriptscriptstyle \mathrm {L}}\) is not a ring, we define scalar-product commitments differently. See the full version for details.

References

  1. Attema, T., Cramer, R.: Compressed \(\varSigma \)-protocol theory and practical application to plug & play secure algorithmics. In: Proceedings of the 40th Annual International Cryptology Conference, CRYPTO 2020, pp. 513–543 (2020)

    Google Scholar 

  2. Abspoel, M., Cramer, R., Damgård, I., Escudero, D., Yuan, C.: Efficient information-theoretic secure multiparty computation over \(\mathbb{Z}/p^k\mathbb{Z}\) via Galois rings. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11891, pp. 471–501. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36030-6_19

    Chapter  Google Scholar 

  3. Attema, T., Cramer, R., Fehr, S.: Compressing proofs of k-out-of-n partial knowledge. IACR Cryptology ePrint Archive, Report 2020/753 (2020)

    Google Scholar 

  4. Attema, T., Cramer, R., Kohl, L.: A compressed \(\varSigma \)-protocol theory for lattices. Cryptology ePrint Archive, Report 2021/307 (2021)

    Google Scholar 

  5. Attema, T., Cramer, R., Rambaud, M.: Compressed sigma-protocols for bilinear circuits and applications to logarithmic-sized transparent threshold signature schemes. IACR Cryptology ePrint Archive, Report 2020/1447 (2020)

    Google Scholar 

  6. Albrecht, M.R., Lai, R.W.F.: Subtractive sets over cyclotomic rings: Limits of schnorr-like arguments over lattices. Cryptology ePrint Archive, Report 2021/202 (2021)

    Google Scholar 

  7. Abspoel, M., et al.: Asymptotically good multiplicative LSSS over Galois rings and applications to MPC over \(\mathbb{Z}/p^k\mathbb{Z} \). In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS, vol. 12493, pp. 151–180. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64840-4_6

    Chapter  Google Scholar 

  8. URL: https://github.com/adjoint-io/bulletproofs

  9. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: Short proofs for confidential transactions and more. In: Proceedings of the 39th IEEE Symposium on Security and Privacy, S&P 2018, pp. 315–334 (2018)

    Google Scholar 

  10. Bootle, J., Cerulli, A., Chaidos, P., Groth, J., Petit, C.: Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 327–357. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_12

    Chapter  MATH  Google Scholar 

  11. Bootle, J., Chiesa, A., Groth, J.: Linear-time arguments with sublinear verification from tensor codes. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 19–46. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_2

    Chapter  Google Scholar 

  12. Ben-Sasson, E., Chiesa, A., Goldberg, L., Gur, T., Riabzev, M., Spooner, N.: Linear-size constant-query IOPs for delegating computation. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 494–521. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_19

    Chapter  Google Scholar 

  13. Ben-Sasson, E., Chiesa, A., Gabizon, A., Riabzev, M., Spooner, N.: Interactive oracle proofs with constant rate and query complexity. In: Proceedings of the 44th International Colloquium on Automata, Languages and Programming, ICALP 2017, pp. 40:1–40:15 (2017)

    Google Scholar 

  14. Bootle, J., Chiesa, A., Liu, S.: Zero-knowledge succinct arguments with a linear-time prover. IACR Cryptology ePrint Archive, Report 2020/1527 (2020)

    Google Scholar 

  15. Boschini, C., Camenisch, J., Ovsiankin, M., Spooner, N.: Efficient post-quantum snarks for RSIS and RLWE and their applications to privacy. In: Proceedings of the 11th International Conference on Post-Quantum Cryptography, PQCrypto 2020, pp. 247–267 (2020)

    Google Scholar 

  16. Ben-Sasson, E., Chiesa, A., Riabzev, M., Spooner, N., Virza, M., Ward, N.P.: Aurora: Transparent succinct arguments for R1CS. In: Proceedings of the 38th Annual International Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT 2019, pp. 103–128 (2019). Full version available at https://eprint.iacr.org/2018/828

  17. Boneh, D., Drake, J., Fisch, B., Gabizon, A.: Halo Infinite: Recursive zk-SNARKs from any additive polynomial commitment scheme. IACR Cryptology ePrint Archive, Report 2020/1536 (2020)

    Google Scholar 

  18. Bhadauria, R., Fang, Z., Hazay, C., Venkitasubramaniam, M., Xie, T., Zhang, Y.: Ligero++: a new optimized sublinear IOP. In: Proceedings of the 27th ACM Conference on Computer and Communications Security, CCS 2020, pp. 2025–2038 (2020)

    Google Scholar 

  19. Babai, L., Fortnow, L., Lund, C.: Non-deterministic exponential time has two-prover interactive protocols. Computational Complexity, vol. 1, pp. 3–40 (1991). Preliminary version appeared in FOCS 1990

    Google Scholar 

  20. Babai, L., Fortnow, L., Levin, L.A., Szegedy, M.: Checking computations in polylogarithmic time. In: Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, STOC 1991, pp. 21–32 (1991)

    Google Scholar 

  21. Bünz, B., Fisch, B., Szepieniec, A.: Transparent SNARKs from DARK compilers. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12105, pp. 677–706. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45721-1_24

    Chapter  Google Scholar 

  22. Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Public-coin zero-knowledge arguments with (almost) minimal time and space overheads. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 168–197. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_7

    Chapter  Google Scholar 

  23. Block, A.R., Holmgren, J., Rosen, A., Rothblum, R.D., Soni, P.: Time- and space-efficient arguments from groups of unknown order. In: Proceedings of the 41st Annual International Cryptology Conference, CRYPTO 2021 (2021)

    Google Scholar 

  24. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Lattice-based SNARGs and their application to more efficient obfuscation. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10212, pp. 247–277. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56617-7_9

    Chapter  Google Scholar 

  25. Boneh, D., Ishai, Y., Sahai, A., Wu, D.J.: Quasi-optimal SNARGs via linear multi-prover interactive proofs. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 222–255. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_8

    Chapter  Google Scholar 

  26. Bootle, J., Lyubashevsky, V., Nguyen, N.K., Seiler, G.: A non-PCP approach to succinct quantum-safe zero-knowledge. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 441–469. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_16

    Chapter  Google Scholar 

  27. Bünz, B., Maller, M., Mishra, P., Tyagi, N., Vesely, P.: Proofs for inner pairing products and applications. Cryptology ePrint Archive, Report 2019/1177 (2019)

    Google Scholar 

  28. Canetti, R., Chen, Y., Holmgren, J., Lombardi, A., Rothblum, G.N., Rothblum, R.D.: Fiat-Shamir from simpler assumptions. Cryptology ePrint Archive, Report 2018/1004 (2018)

    Google Scholar 

  29. Chen, S., Cheon, J.H., Kim, D., Park, D.: Verifiable computing for approximate computation. IACR Cryptology ePrint Archive, Report 2019/762 (2019)

    Google Scholar 

  30. Cramer, R., Damgård, I., Escudero, D., Scholl, P., Xing, C.: SPD\(\mathbb{Z}_{2^k}\): efficient MPC mod \(2^k\) for dishonest majority. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10992, pp. 769–798. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96881-0_26

    Chapter  Google Scholar 

  31. Campanelli, M., Faonio, A., Fiore, D., Querol, A., Rodríguez, H.: Lunar: a toolbox for more efficient universal and updatable zkSNARKs and commit-and-prove extensions. Cryptology ePrint Archive, Report 2020/1069 (2020)

    Google Scholar 

  32. Cramer, R., Fehr, S., Ishai, Y., Kushilevitz, E.: Efficient multi-party computation over rings. In: Proceedings of the 22nd Annual International Conference on Theory and Application of Cryptographic Techniques, EUROCRYPT 2003, pp. 596–613 (2003)

    Google Scholar 

  33. Chung, H., Han, K., Ju, C., Kim, M., Seo, J.H.: Bulletproofs+: Shorter proofs for privacy-enhanced distributed ledger. Cryptology ePrint Archive, Report 2020/735 (2020)

    Google Scholar 

  34. Chiesa, A., Hu, Y., Maller, M., Mishra, P., Vesely, N., Ward, N.: Marlin: Preprocessing zkSNARKs with universal and updatable SRS. In: Proceedings of the 39th Annual International Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT 2020, pp. 738–768 (2020)

    Google Scholar 

  35. Chiesa, A., Manohar, P., Spooner, N.: Succinct arguments in the quantum random oracle model. In: Hofheinz, D., Rosen, A. (eds.) TCC 2019. LNCS, vol. 11892, pp. 1–29. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-36033-7_1

    Chapter  Google Scholar 

  36. Chiesa, A., Ma, F., Spooner, N., Zhandry, M.: Post-quantum succinct arguments. Cryptology ePrint Archive, Report 2021/334 (2021)

    Google Scholar 

  37. Cormode, G., Mitzenmacher, M., Thaler, J.: Practical verified computation with streaming interactive proofs. In: Proceedings of the 4th Symposium on Innovations in Theoretical Computer Science, ITCS 2012, pp. 90–112 (2012)

    Google Scholar 

  38. Chiesa, A., Ojha, D., Spooner, N.: Fractal: post-quantum and transparent recursive proofs from holography. In: Proceedings of the 39th Annual International Conference on the Theory and Applications of Cryptographic Techniques, EUROCRYPT 2020, pp. 769–793 (2020)

    Google Scholar 

  39. Chiesa, A., Yogev, E.: Barriers for succinct arguments in the random oracle model. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12551, pp. 47–76. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64378-2_3

    Chapter  Google Scholar 

  40. Goldwasser, S., Kalai, Y.T., Rothblum, G.N.: Delegating computation: interactive proofs for muggles. In: Proceedings of the 40th Annual ACM Symposium on Theory of Computing, STOC 2008, pp. 113–122 (2008)

    Google Scholar 

  41. Gennaro, R., Minelli, M., Nitulescu, A., Orrù, M.: Lattice-based zk-SNARKs from square span programs. In: Proceedings of the 25th ACM Conference on Computer and Communications Security, CCS 2018, pp. 556–573 (2018)

    Google Scholar 

  42. Ganesh, C., Nitulescu, A., Soria-Vazquez, E.: Rinocchio: SNARKs for ring arithmetic. Cryptology ePrint Archive, Report 2021/322 (2021)

    Google Scholar 

  43. Ghoshal, A., Tessaro, S.: Tight state-restoration soundness in the algebraic group model. Cryptology ePrint Archive, Report 2020/1351 (2020)

    Google Scholar 

  44. Jawale, R., Kalai, Y.T., Khurana, D., Zhang, R.: SNARGs for bounded depth computations and PPAD hardness from sub-exponential LWE. IACR Cryptology ePrint Archive, Report 2020/980 (2020)

    Google Scholar 

  45. Jaeger, J., Tessaro, S.: Expected-time cryptography: generic techniques and applications to concrete soundness. In: Pass, R., Pietrzak, K. (eds.) TCC 2020. LNCS, vol. 12552, pp. 414–443. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64381-2_15

    Chapter  Google Scholar 

  46. Kilian, J.: A note on efficient zero-knowledge proofs and arguments. In: Proceedings of the 24th Annual ACM Symposium on Theory of Computing, STOC 1992, pp. 723–732 (1992)

    Google Scholar 

  47. Lund, C., Fortnow, L., Karloff, H.J., Nisan, N.: Algebraic methods for interactive proof systems. J. ACM 39(4), 859–868 (1992)

    Article  MathSciNet  Google Scholar 

  48. Lai, R.W.F., Malavolta, G., Ronge, V.: Succinct arguments for bilinear group arithmetic: practical structure-preserving cryptography. In: Proceedings of the 26th ACM Conference on Computer and Communications Security, CCS 2019, pp. 2057–2074 (2019)

    Google Scholar 

  49. Lee, J.: Dory: Efficient, transparent arguments for generalised inner products and polynomial commitments. Cryptology ePrint Archive, Report 2020/1274 (2020)

    Google Scholar 

  50. Meir, O.: IP = PSPACE using error-correcting codes. SIAM J. Comput. 42(1), 380–403 (2013)

    Article  MathSciNet  Google Scholar 

  51. URL: https://github.com/monero-project/monero/tree/master/src/ringct

  52. del Pino, R., Lyubashevsky, V., Seiler, G.: Short discrete log proofs for FHE and ring-LWE ciphertexts. In: Proceedings of the 22nd International Conference on Practice and Theory of Public-Key Cryptography, PKC 2019, pp. 344–373 (2019)

    Google Scholar 

  53. Pivx implementation of bulletproofs. https://github.com/PIVX-Project/PIVX/tree/Bulletproofs/src/libzerocoin

  54. Ron-Zewi, N., Rothblum, R.: Local proofs approaching the witness length. In: Proceedings of the 61st Annual IEEE Symposium on Foundations of Computer Science, FOCS 2020 (2020)

    Google Scholar 

  55. Rothblum, G.N., Vadhan, S.: Are PCPs inherent in efficient arguments? In: Proceedings of the 24th IEEE Annual Conference on Computational Complexity, CCC 2009, pp. 81–92 (2009)

    Google Scholar 

  56. Setty, S.: Spartan: efficient and general-purpose zksnarks without trusted setup. In: Proceedings of the 40th Annual International Cryptology Conference, CRYPTO 2020, pp. 704–737 (2020)

    Google Scholar 

  57. Thaler, J.: Time-optimal interactive proofs for circuit evaluation. In: Proceedings of the 33rd Annual International Cryptology Conference, CRYPTO 2013, pp. 71–89 (2013)

    Google Scholar 

  58. Vu, V., Setty, S., Blumberg, A.J., Walfish, M.: A hybrid architecture for interactive verifiable computation. In: Proceedings of the 34th IEEE Symposium on Security and Privacy, Oakland 2013, pp. 223–237 (2013)

    Google Scholar 

  59. Wahby, R.S., Tzialla, I., Shelat, A., Thaler, J., Walfish, M.: Doubly-efficient zkSNARKs without trusted setup. In: Proceedings of the 39th IEEE Symposium on Security and Privacy, S&P 2018, pp. 926–943 (2018)

    Google Scholar 

  60. Wahby, R.S., et al.: Full accounting for verifiable outsourcing. In: Proceedings of the 24th ACM Conference on Computer and Communications Security, CCS 2017, pap. 2071–2086 (2017)

    Google Scholar 

  61. Xie, T., Zhang, J., Zhang, Y., Papamanthou, C., Song, D.: Libra: succinct zero-knowledge proofs with optimal prover computation. In: Proceedings of the 39th Annual International Cryptology Conference, CRYPTO 2019, pp. 733–764 (2019)

    Google Scholar 

  62. Zhang, Y., Genkin, D., Katz, J., Papadopoulos, D., Papamanthou, C.: vSQL: verifying arbitrary SQL queries over dynamic outsourced databases. In: Proceedings of the 38th IEEE Symposium on Security and Privacy, S&P 2017, pp. 863–880 (2017)

    Google Scholar 

  63. Zhang, J., Xie, T., Zhang, Y., Song, D.: Transparent polynomial delegation and its applications to zero knowledge proof. In: Proceedings of the 41st IEEE Symposium on Security and Privacy, S&P 2020, pp. 859–876 (2020)

    Google Scholar 

  64. Dalek cryptography. A pure-Rust implementation of Bulletproofs using Ristretto (2018)

    Google Scholar 

Download references

Acknowledgments

This research was supported in part by a donation from the Ethereum Foundation. Part of the work was conducted while the first author was employed by UC Berkeley, and part while employed by IBM Research – Zurich, supported by the SNSF ERC Transfer Grant CRETP2-166734 – FELICITY.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Bootle .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bootle, J., Chiesa, A., Sotiraki, K. (2021). Sumcheck Arguments and Their Applications. In: Malkin, T., Peikert, C. (eds) Advances in Cryptology – CRYPTO 2021. CRYPTO 2021. Lecture Notes in Computer Science(), vol 12825. Springer, Cham. https://doi.org/10.1007/978-3-030-84242-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84242-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84241-3

  • Online ISBN: 978-3-030-84242-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics