Skip to main content

Fractional-Order Nonlinear System Identification Using MPC Technique

  • Conference paper
  • First Online:
Computer Information Systems and Industrial Management (CISIM 2021)

Abstract

Many real-world processes exhibit fractional-order dynamics and are described by the non-integer order differential equations. In this paper, we quantify the fitting of the Oustaloup approximation method to the fractional-order state-space system to be obtained in the specified narrow frequency range and order. A novel method of the plant model state estimation using the model predictive control (MPC) technique has been verified on the approximated fractional-order water tanks system. To improve the system tracking and reduce the experimental effort, the Kalman filter (KF) has been connected to the MPC structure. The main objective is to design a control system of the linearized fractional-order system with the tuning of its parameters concerning an additive white noise affecting the output of the system. The presented scheme has been verified using numerical examples, and the results of the prediction of the state are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Monje, C.A., Chen, Y., Vinagre, B., Xue, D., Feliu, V.: Fractional orders systems and controls: fundamentals and applications. Advances in Industrial Control. Springer, Cham (2010). https://doi.org/10.1007/978-1-84996-335-0

  2. Chen, Y., Petráš, I., Xue, D.: Fractional order control - a tutorial. In: Proceedings of ACC 2009. American Control Conference, pp. 1397–1411 (2009)

    Google Scholar 

  3. Torvik, P.J., Bagley, R.L.: On the appearance of the fractional derivative in the behavior of real materials. Trans. ASME 51(4), 294–298 (1984)

    Article  Google Scholar 

  4. Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. Fund. Theory Appl. 47(1), 25–40 (2000)

    Google Scholar 

  5. Miller, K., Ross, B.: An introduction to the fractional calculus and fractional differential equations. Wiley, Hoboken (1993)

    MATH  Google Scholar 

  6. Magin, R., L.: Fractional Calculus in Bioengineering. Begell House Publishers, Danbury (2006)

    Google Scholar 

  7. West, B., Bologna, M., Grigolini, P.: Physics of Fractal Operators. Springer, New York (2003). https://doi.org/10.1007/978-0-387-21746-8

    Book  Google Scholar 

  8. Petras, I.: Fractional-Order Nonlinear Systems. Springer, New York (2011)

    Google Scholar 

  9. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  10. Valério, D., Costa, J.: An Introduction to Fractional Control. IET, London (2013)

    MATH  Google Scholar 

  11. Sheng, H., Chen, Y.D., Qiu, T.S.: Fractional Processes and Fractional-order Signal Processing. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2233-3

    Book  MATH  Google Scholar 

  12. Tepljakov, A., Petlenkov, E., Belikov, J.: FOMCON: a MATLAB toolbox for fractional-order system identification and control. Int. J. Microelectron. Comput. Sci. 2(2), 51–62 (2011)

    Google Scholar 

  13. Monje, C., Vinagre, B., Feliu, V., Chen, Y.: Tuning and autotuning of fractional order controllers for industry applications. Control Eng. Pract. 16(7), 798–812 (2008)

    Article  Google Scholar 

  14. Hussain, M.: Review of the applications of neural networks in chemical process control–simulation and on–line implementation. Artif. Intell. Eng. 13, 55–68 (1999)

    Article  Google Scholar 

  15. Maciejowski, J.M.: Predictive Control with Constraints, pp. 108–115. Prentice-Hall, Englewood Cliffs (2002)

    Google Scholar 

  16. Jakowluk, W.: Design of a state estimation considering model predictive control strategy for a nonlinear water tanks process. In: Saeed, K., Chaki, R., Janev, V. (eds.) CISIM 2019. LNCS, vol. 11703, pp. 457–468. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28957-7_38

    Chapter  Google Scholar 

  17. Rawlings, J.B., Mayne, D.Q.: Model Predictive Control: Theory and Design, 5th ed., Nob Hill Pub., Madison (2012)

    Google Scholar 

  18. Bernardini, D., Bemporad, A.: Stabilizing model predictive control of stochastic constrained linear systems. IEEE Trans. Autom. Control 57, 1468–1480 (2012)

    Article  MathSciNet  Google Scholar 

  19. Atkinson, A.C., Donev, A.N., Tobias, R.D.: Optimum Experimental Designs, with SAS, pp. 119–147. Oxford University Press, Oxford (2007)

    MATH  Google Scholar 

  20. Schoukens, J., Ljung, L.: Nonlinear system identification. A user-oriented roadmap. IEEE Control Syst. Mag. 39(6), 28–99 (2019)

    Google Scholar 

  21. Rojas, C.R., Agüero, J.C., Welsh, J.S., Goodwin, G.C.: On the equivalence of least costly and traditional experiment design for control. Automatica 44(11), 2706–2715 (2008)

    Article  MathSciNet  Google Scholar 

  22. Jakowluk, W.: Plant friendly input design for parameter estimation in an inertial system with respect to D-efficiency constraints. Entropy 16(11), 5822–5837 (2014)

    Article  Google Scholar 

  23. Kumar, A., Nabil, M., Narasimhan, S.: Economical and plant friendly input design for system identification. In: Proceedings 2014 European Control Conference (ECC), Strasbourg, France, pp. 732–737 (2014)

    Google Scholar 

  24. Annergren, M., Larsson, C.A., Hjalmarsson, H., Bombois, X., Wahlberg, B.: Application-oriented input design in system identification: optimal input design for control. IEEE Control Syst. Mag. 37(2), 31–56 (2017)

    Article  Google Scholar 

  25. Jakowluk, W.: Optimal input signal design for fractional-order system identification. Bull. Polish Acad. Sci. Tech. Sci. 67(1), 37–44 (2019)

    Google Scholar 

  26. Jakowluk, W., Świercz, M.: Application-oriented experiment design for model predictive control. Bull. Polish Acad. Sci. Tech. Sci. 68(4), 883–891 (2020)

    Google Scholar 

Download references

Acknowledgment

The present study was supported by a grant WZ/WI-IIT/4/2020 from the Bialystok University of Technology and was funded from the resources for research by the Ministry of Science and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sjoerd Boersma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jakowluk, W., Boersma, S. (2021). Fractional-Order Nonlinear System Identification Using MPC Technique. In: Saeed, K., Dvorský, J. (eds) Computer Information Systems and Industrial Management. CISIM 2021. Lecture Notes in Computer Science(), vol 12883. Springer, Cham. https://doi.org/10.1007/978-3-030-84340-3_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84340-3_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84339-7

  • Online ISBN: 978-3-030-84340-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics