Skip to main content

Chemical Structure Data Retrieval Algorithm for Chemistry Online Teaching

  • Conference paper
  • First Online:
e-Learning, e-Education, and Online Training (eLEOT 2021)

Abstract

In the process of chemical network education, there are some problems in chemical molecular structure retrieval, such as low retrieval efficiency and slow retrieval speed, which can not meet the needs of teaching. Therefore, a large-scale chemical structure data retrieval algorithm is proposed for chemistry online teaching. Through the analysis of the chemical data, the chemical structure of the molecule was obtained. Using JSP technology and driver, the retrieval speed is improved. In the process of chemistry online teaching, large-scale chemical structure data can be retrieved. Through the comparative experiment, the retrieval speed and efficiency are taken as the experimental indexes. The retrieval speed ratio of this method is more than 2.3, and the retrieval time is about 100 s.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, D., Wang, J.: Design of Internet online auxiliary teaching system based on Web. Mod. Electron. Tech. 40(20), 28–30 (2017)

    Google Scholar 

  2. Guo, H., Li, Y., An, H.: A Parallel communication algorithm in supersonic COIL’s calculations using multiblock mesh. J. Comput. Res. Dev. 53(5), 1166–1172 (2016)

    Google Scholar 

  3. Lee, M.W.: Online teaching of chemistry during the period of COVID-19: experience at a national university in Korea. J. Chem. Educ. 97(9), 2834–2838 (2020)

    Article  Google Scholar 

  4. Jeffery, K.A., Bauer, C.F.: Students’ responses to emergency remote online teaching reveal critical factors for all teaching. J. Chem. Educ. 97(9), 2472–2485 (2020)

    Article  Google Scholar 

  5. Xing, C., Xiong, Z., Li, Y., et al.: Construction algorithm of geometric invariant based on area ratio. Appl. Res. Comput. 34(6), 1900–1904 (2017)

    Google Scholar 

  6. Lin, Z., Shuai, J.: Multi-crossover strategy of multi-objective cellular genetic algorithm research on flexible job-shop scheduling problem. Sci. Technol. Eng. 17(7), 69–76 (2017)

    Google Scholar 

  7. Liu, S., Glowatz, M., Zappatore, M., et al. (eds.): e-Learning, e-Education, and Online Training, pp. 1–374. Springer, Heidelberg (2018)

    Google Scholar 

  8. Harshman, J., Yezierski, E.: Assessment data-driven inquiry: a review of how to use assessment results to inform chemistry teaching. Sci. Educ. 25(2), 97–107 (2017)

    Google Scholar 

  9. Penny, M.R., Cao, Z.J., Patel, B., et al.: Three-dimensional printing of a scalable molecular model and orbital kit for organic chemistry teaching and learning. J. Chem. Educ. 94(9), 1265–1271 (2017)

    Article  Google Scholar 

  10. Peng, Z., Jimenez, J.L.: KinSim: a research-grade, user-friendly, visual kinetics simulator for chemical-kinetics and environmental-chemistry teaching. 96(4), 806–811 (2019)

    Google Scholar 

  11. Liu, S., Lu, M., Li, H., et al.: Prediction of gene expression patterns with generalized linear regression model. Front. Genet. 10, 120 (2019)

    Article  Google Scholar 

  12. Liu, S., Li, Z., Zhang, Y., et al.: Introduction of key problems in long-distance learning and training. Mob. Netw. Appl. 24(1), 1–4 (2019)

    Article  Google Scholar 

  13. Guo, Y., Gao, N.: Rational synthetic parameter analysis of open-framework AlPOs Based on Data Mining Method. Chin. J. Inorgan. Chem. 32(3), 457–463 (2016)

    Google Scholar 

  14. Cooper, M.M., Stowe, R.L.: Chemistry education research—from personal empiricism to evidence, theory, and informed practice. Chem. Rev. 118(12), 6053–6087 (2018)

    Article  Google Scholar 

  15. Shapiro, H.B., Lee, C.H., Roth, N.E.W., et al.: Understanding the massive open online course (MOOC) student experience: an examination of attitudes, motivations, and barriers. Comput. Educ. 110, 35–50 (2017)

    Article  Google Scholar 

  16. Zancanaro, A., Nunes, C.S., de Souza, D.M.J.C.: Evaluation of free platforms for delivery of Massive Open Online Courses (MOOCs). Turk. Online J. Dist. Educ. 18(1), 166–181 (2017)

    Article  Google Scholar 

  17. Pölloth, B., Teikmane, I., Schwarzer, S., et al.: Development of a modular online video library for the introductory organic chemistry laboratory. J. Chem. Educ. 97(2), 338–343 (2019)

    Article  Google Scholar 

  18. Crimmins, M.T., Midkiff, B.: High structure active learning pedagogy for the teaching of organic chemistry: assessing the impact on academic outcomes. J. Chem. Educ. 94(4), 429–438 (2017)

    Article  Google Scholar 

  19. Krijtenburg-Lewerissa, K., Pol, H.J., Brinkman, A., et al.: Insights into teaching quantum mechanics in secondary and lower undergraduate education. Phys. Rev. Phys. Educ. Res. 13(1), 010109 (2017)

    Article  Google Scholar 

  20. Gadaleta, D., Lombardo, A., Toma, C., Benfenati, E.: A new semi-automated workflow for chemical data retrieval and quality checking for modeling applications. J. Cheminf. 10(1), 1–13 (2018). https://doi.org/10.1186/s13321-018-0315-6

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, Gm., Dai, X., Hou, W. (2021). Chemical Structure Data Retrieval Algorithm for Chemistry Online Teaching. In: Fu, W., Liu, S., Dai, J. (eds) e-Learning, e-Education, and Online Training. eLEOT 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 390. Springer, Cham. https://doi.org/10.1007/978-3-030-84386-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84386-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84385-4

  • Online ISBN: 978-3-030-84386-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics