Abstract
In the past decades, the evolution of big cities was followed by the emergence of smart city technologies. These new technologies enable in-depth analysis, optimization of public city services, and new modes of governance. However, as the cities’ infrastructure develops, the emerging data sources generate massive datasets. Currently, the efficient and accurate processing of smart cities’ enormous time series datasets poses a particular challenge to data scientists.
To overcome this problem, many high-level representations of time series have been proposed, including Fourier transform, wavelet transform, or symbolic representation. Applying fundamental symbolization techniques for time series with multiple variables, such as Symbolic Aggregate Approximation (SAX), results in distinct sequences of symbols for each variable.
A novel multivariate extension of SAX will be presented, which allows to express a multivariate time series with one sequence of symbols. Integrating individual sequences in one symbolic sequence provides better expressive power, while our modified SAX distance measure can be applied for clustering and classification tasks in smart cities, decreasing the enormous dataset storage and speeding up the big data processing. Performance evaluation shows that our multivariate symbolic representation results in better accuracy and dimension reduction than the classical SAX method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
S.h. An, B.H. Lee, D.R. Shin, in 2011 Third International Conference on Computational Intelligence, Communication Systems and Networks (IEEE, 2011), pp. 332–337
F. Ahmed, Y. Hawas, Transportation Research Part C: Emerging Technologies 60, 52 (2015)
Caltrans performance measurement system (PEMS). URL http://pems.dot.ca.gov/
T. Lin, H. Rivano, F. Le Mouël, IEEE Transactions on Intelligent Transportation Systems 18(12), 3229 (2017)
B. Siregar, A.B.A. Nasution, F. Fahmi, in 2016 International Conference on ICT For Smart Society (ICISS) (IEEE, 2016), pp. 49–52
S. Seto, W. Zhang, Y. Zhou, in 2015 IEEE Symposium Series on Computational Intelligence (IEEE, 2015), pp. 1399–1406
N. Dawar, N. Kehtarnavaz, in 2018 IEEE 14th International Conference on Control and Automation (ICCA) (IEEE, 2018), pp. 482–485
A. Fleury, M. Vacher, N. Noury, IEEE transactions on information technology in biomedicine 14(2), 274 (2009)
X. Su, H. Tong, P. Ji, Tsinghua science and technology 19(3), 235 (2014)
A. Bagnall, J. Lines, A. Bostrom, J. Large, E. Keogh, Data Mining and Knowledge Discovery 31(3), 606 (2017)
S. Aghabozorgi, A.S. Shirkhorshidi, T.Y. Wah, Information Systems 53, 16 (2015)
H.I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, P.A. Muller, Data Mining and Knowledge Discovery pp. 1–47 (2019)
M. Ahmed, A.N. Mahmood, M.R. Islam, Future Generation Computer Systems 55, 278 (2016)
B. Esmael, A. Arnaout, R.K. Fruhwirth, G. Thonhauser, in International Conference on Computational Science and Its Applications (Springer, 2012), pp. 392–403
R. Agrawal, C. Faloutsos, A. Swami, in International conference on foundations of data organization and algorithms (Springer, 1993), pp. 69–84
Y. Qu, B.l. Adam, M. Thornquist, J.D. Potter, M.L. Thompson, Y. Yasui, J. Davis, P.F. Schellhammer, L. Cazares, M. Clements, et al., Biometrics 59(1), 143 (2003)
B.K. Yi, C. Faloutsos, in VLDB, vol. 385 (Citeseer, 2000), vol. 385, p. 99
C. Guo, H. Li, D. Pan, in International conference on knowledge science, engineering and management (Springer, 2010), pp. 234–244
E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, ACM Sigmod Record 30(2), 151 (2001)
I.V. Oseledets, E.E. Tyrtyshnikov, SIAM Journal on Scientific Computing 31(5), 3744 (2009)
J. Lin, E. Keogh, L. Wei, S. Lonardi, Data Mining and knowledge discovery 15(2), 107 (2007)
B. Lkhagva, Y. Suzuki, K. Kawagoe, DEWS2006 4A-i8 7 (2006)
S. Malinowski, T. Guyet, R. Quiniou, R. Tavenard, in International Symposium on Intelligent Data Analysis (Springer, 2013), pp. 273–284
C.T. Zan, H. Yamana, in Proceedings of the 18th International Conference on Information Integration and Web-based Applications and Services (ACM, 2016), pp. 72–80
Y. Sun, J. Li, J. Liu, B. Sun, C. Chow, Neurocomputing 138, 189 (2014)
A.M. Nagy, V. Simon, Pervasive and Mobile Computing 50, 148 (2018). DOI https://doi.org/10.1016/j.pmcj.2018.07.004
C.T. Zan, H. Yamana, International Journal of Web Information Systems 13(4), 387 (2017)
E. Keogh, S. Kasetty, Data Mining and knowledge discovery 7(4), 349 (2003)
E. Keogh, S. Lonardi, B.c. Chiu, in Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining (ACM, 2002), pp. 550–556
R.J. Larsen, M.L. Marx, et al., An introduction to mathematical statistics and its applications, vol. 2 (Prentice-Hall Englewood Cliffs, NJ, 1986)
A. Apostolico, M.E. Bock, S. Lonardi, Journal of Computational Biology 10(3–4), 283 (2003)
K. Zhang, Y. Li, Y. Chai, L. Huang, in 2018 Chinese Control And Decision Conference (CCDC) (IEEE, 2018), pp. 2234–2240
N.C. Castro, P.J. Azevedo, Intelligent Data Analysis 19(3), 581–595 (2015). URL https://doi.org/10.3233/IDA-150733
R. Xu, D.C. Wunsch, (2005)
D. Dua, C. Graff. UCI machine learning repository (2017). URL http://archive.ics.uci.edu/ml
N. Hansen, in Towards a new evolutionary computation (Springer, 2006), pp. 75–102
N. Hansen, in Proceedings of the 11th Annual Conference Companion on Genetic and Evolutionary Computation Conference: Late Breaking Papers (ACM, 2009), pp. 2389–2396
R. Eberhart, J. Kennedy, in MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science (IEEE, 1995), pp. 39–43
L.J.V. Miranda, Journal of Open Source Software 3 (2018). URL https://doi.org/10.21105/joss.00433
N. Hansen, Y. Akimoto, P. Baudis. Cma-es/pycma on github (2019). URL https://doi.org/10.5281/zenodo.2559635
A.M. Nagy. Msax (2019). URL https://doi.org/10.5281/zenodo.3402973
P. Senin, S. Malinchik, in 2013 IEEE 13th international conference on data mining (IEEE, 2013), pp. 1175–1180
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this chapter
Cite this chapter
Nagy, A.M., Simon, V. (2022). A Novel Data Representation Method for Smart Cities’ Big Data. In: Pardalos, P.M., Rassia, S.T., Tsokas, A. (eds) Artificial Intelligence, Machine Learning, and Optimization Tools for Smart Cities. Springer Optimization and Its Applications, vol 186. Springer, Cham. https://doi.org/10.1007/978-3-030-84459-2_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-84459-2_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-84458-5
Online ISBN: 978-3-030-84459-2
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)