Skip to main content

An Improved Firefly Algorithm for Generalized Traveling Salesman Problem

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12836))

Included in the following conference series:

  • 1857 Accesses

Abstract

The material transportation problem in workshops under complex environment can be idealized as the Generalized Traveling Salesman Problem (GTSP). To solve such a problem, an improved firefly algorithm is proposed. Firstly, two-layer coding is utilized to define the firefly individual, the inter-individual distance formula and position updating formula in standard firefly algorithm are improved, and the repaired method for infeasible solutions is defined. Then, in order to improve the local optimization ability of the proposed algorithm and accelerate the convergence speed, an improved Iterative Local Search (ILS) strategy and Complete 2-opt (C2opt) optimized operator are introduced. Moreover, the greedy firefly mutation strategy is used. Finally, 20 test cases are simulated with the algorithm. Experimental results indicate that the proposed algorithm has good convergence speed and problem solving accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Henry-Labordere, A.L.: The record balancing problem: a dynamic programming solution of a generalized traveling salesman problem. RAIRO Oper. Res. B2, 43–49 (1969)

    MATH  Google Scholar 

  2. Saksena, J.P.: Mathematical model of scheduling clients through welfare agencies. Can. Oper. Res. Soc. J. 8(3), 185–200 (1970)

    MathSciNet  MATH  Google Scholar 

  3. Srivastava, S.S., Kumar, S., Garg, R.C., Sen, P.: Generalized traveling salesman problem through n sets of nodes. Can. Oper. Res. Soc. J. 7(2), 97–101 (1969)

    MATH  Google Scholar 

  4. Laporte, G., Asef-Vaziri, A., Sriskandarajah, C.: Some applications of the generalized travelling salesman problem. J. Oper. Res. Soc. 47(12), 1461–1467 (1996)

    Article  Google Scholar 

  5. Easwaran, A.M., Pitt, J., Poslad, S.: The agent service brokering problem as a generalised travelling salesman problem. In: Conference on Autonomous Agents, pp. 414–415. ACM (1999)

    Google Scholar 

  6. Wu, C., Liang, Y., Lee, H., Lu, C.: Generalized chromosome genetic algorithm for generalized traveling salesman problems and its applications for machining. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 70(1), 016701 (2004)

    Article  Google Scholar 

  7. Laporte, G., Nobert, Y.: Generalized travelling salesman problem through n sets of nodes: an integer programming approach. INFOR Inf. Syst. Oper. Res. 21(1), 61–75 (1983)

    MATH  Google Scholar 

  8. Fischetti, M., Toth, J.: A branch-and-cut algorithm for the symmetric generalized traveling salesman problem. Oper. Res. 45(3), 378–394 (1997)

    Article  MathSciNet  Google Scholar 

  9. Dimitrijevic, V., Saric, Z.: An efficient transformation of the generalized traveling salesman problem into the traveling salesman problem on digraphs. Inf. Sci. 102(1–4), 105–110 (1997)

    Article  MathSciNet  Google Scholar 

  10. Yang, W., Zhao, Y.: Improved simulated annealing algorithm for GTSP. In: International Conference on Automatic Control & Artificial Intelligence, pp. 1202–1205. IET, April 2013

    Google Scholar 

  11. Pintea, C.M., Pop, P.C., Chira, C.: The generalized traveling salesman problem solved with ant algorithms. Complex Adapt. Syst. Model. 5(1), 8 (2017)

    Article  Google Scholar 

  12. Krari, M.E., Ahiod, B.: A memetic algorithm based on breakout local search for the generalized travelling salesman problem. arXiv:1911.01966, October 2019

  13. Yang, X.: Firefly algorithm, stochastic test functions and design optimisation . Int. J. Bio Inspired Comput. 2(2), 78–84 (2010)

    Article  Google Scholar 

  14. Zhou, Y.Q., Huang, Z.X.: Artificial glowworm swarm optimization algorithm for tsp. Control Decis. 27(27), 1816–1821 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Yu, H.T., Goo, L.Q., Han, X.C.: Discrete artificial firefly algorithm for solving traveling salesman problems. Huanan Ligong Daxue Xuebao/J. South China Univ. Technol. (Nat. Sci.) 43(1), 126–131 and 139 (2015)

    Google Scholar 

  16. Zhang, L.Y., Gao, Y., Fei, T.: Firefly genetic algorithm for traveling salesman problem. Comput. Eng. Des. 40(7), 1939–1944 (2019)

    Google Scholar 

  17. Liu, C., Liu, L.Q., Zhang, L.N., Yang, X.S.: An improved firefly algorithm and its application in global optimization. J. Harbin Eng. Univ. 38(004), 569–577 (2017)

    MATH  Google Scholar 

  18. Zhang, Q., Li, P.C.: Adaptive grouping difference firefly algorithm for continuous space optimization problems. Control and Decis. 32(7), 1217–1222 (2017)

    MATH  Google Scholar 

  19. Liu, J.S., Mao, Y.L., Li, Y.: Natural selection firefly optimization algorithm with oscillation and constraint. Control Decis. 35(10), 2363–2371 (2020)

    Google Scholar 

  20. Liu, C.Y., Ren, Y.Y., Bi, X.J.: Timing optimization of regional traffic signals based on improved firefly algorithm. Control Decis. 35(12), 2829–2834 (2020)

    Google Scholar 

  21. Kramer, O.: Iterated local search. In: A Brief Introduction to Continuous Evolutionary Optimization. SAST, pp. 45–54. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-03422-5_5

  22. Croes, G.A.: A method for solving travelling salesman problems. Oper. Res. 6, 791–812 (1958)

    Article  MathSciNet  Google Scholar 

  23. Reinelt, G.: TSPLIB–a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)

    Article  Google Scholar 

  24. Yang, J., Shi, X., Marchese, M., Liang, Y.: An ant colony optimization method for generalized TSP problem. Prog. Nat. Sci. 18(011), 1417–1422 (2008)

    Article  MathSciNet  Google Scholar 

  25. Tang, X., Yang, C., Zhou, X., Gui, W.: A discrete state transition algorithm for generalized traveling salesman problem. Control theory & applications. arXiv:1304.7607v1, August 2013

  26. Boctor, R.: An efficient composite heuristic for the symmetric generalized traveling salesman problem. Eur. J. Oper. Res. 108(3), 571–584 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China and the Royal Society of Edinburgh (51911530245), Guangdong Basic and Applied Basic Research Foundation (2021A1515010506), China Scholarship Council (No. [2020]1509), and Zhanjiang Science and Technology Project (2020A01001, 2019A03014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xifan Yao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Y., Yao, X., Jiang, J. (2021). An Improved Firefly Algorithm for Generalized Traveling Salesman Problem. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Bevilacqua, V. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12836. Springer, Cham. https://doi.org/10.1007/978-3-030-84522-3_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84522-3_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84521-6

  • Online ISBN: 978-3-030-84522-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics