Skip to main content

Flight Control for 6-DOF Quadrotor via Sliding Mode Integral Filter

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12837))

Included in the following conference series:

  • 1302 Accesses

Abstract

This article mainly focuses on the ability of the quadrotor UAV to follow the desired trajectory when it is subjected to various external disturbances. In order to solve this problem, a closed-loop six-degree-of-freedom full control system will be proposed in the article. The sliding mode integral technology is introduced when designing the filter, which effectively solves the “computational explosion” problem in the traditional backstepping method by avoiding the analytical derivation process of the virtual control input. At the same time, an backstepping controller based on the above command filter is designed. After theoretical analysis, the stability of the closed-loop system is guaranteed, and the effectiveness of this method is further verified through simulation experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Liu, H., Bai, Y., Lu, G., Zhong, Y.: Robust attitude control of uncertain quadrotors. IET Control Theory Appl. 11(2), 406–415 (2015)

    Google Scholar 

  2. Nonami, K.: Prospect and recent research & development for civil use autonomous unmanned aircraft as UAV and MAV. J. Syst. Des. Dyn. 1(2), 120–128 (2007)

    Google Scholar 

  3. Lee, T., Leok, M., McClamroch, N.H.: Nonlinear robust tracking control of a quadrotor UAV on SE(3). Asian J. Control 15(2), 391–408 (2013)

    Article  MathSciNet  Google Scholar 

  4. Yuan, C., Zhang, Y., Liu, Z.: A survey on technologies for automatic forest fire monitoring, detection, and fighting using unmanned aerial vehicles and remote sensing techniques. Canadian J. ForestbRes. 45(7), 783–792 (2015)

    Article  Google Scholar 

  5. Xu, R., Özgüner, Ü.: Sliding mode control of a class of underactuated systems. Automatica 44(1), 233–241 (2008)

    Article  MathSciNet  Google Scholar 

  6. Xiao, B., Yin, S.: A new disturbance attenuation control scheme for quadrotor unmanned aerial vehicles. IEEE Trans. Industr. Inf. 13(6), 2922–2932 (2017)

    Article  Google Scholar 

  7. Castillo, P., Dzul, A., Lozano, R.: Real-time stabilization and tracking of a four-rotor mini rotorcraft. IEEE Trans. Control Syst. Technol. 12(4), 510–516 (2004)

    Article  Google Scholar 

  8. Bo, G., Xin, L., Hui, Z., Ling, W.: Quadrotor helicopter attitude control using cascade PID. In: 2016 Chinese Control and Decision Conference (CCDC), IEEE, Yinchuan, China (2016)

    Google Scholar 

  9. Zhang, Z.: Application of PID simulation control mode in quadrotor aircraft. In: 2020 International Conference on Computer Engineering and Application (ICCEA), IEEE, Guangzhou, China (2020)

    Google Scholar 

  10. Moreno-Valenzuela, J., Pérez-Alcocer, R., Guerrero-Medina, M., Dzul, A.: Nonlinear PID-type controller for quadrotor trajectory tracking. IEEE/ASME Trans. Mechatron. 23(5), 2436–2447 (2018)

    Article  Google Scholar 

  11. Karahan, M., Kasnakoglu, C.: Modeling and simulation of quadrotor UAV using PID controller. In: 11th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), IEEE, Pitesti, Romania (2019)

    Google Scholar 

  12. Liu, C., Pan, J., Chang, Y.: PID and LQR trajectory tracking control for an unmanned quadrotor helicopter: experimental studies. In: 35th Chinese Control Conference (CCC), IEEE, Chengdu, China (2016)

    Google Scholar 

  13. Cohen, M.R., Abdulrahim, K., Forbes, J.R.: Finite-horizon LQR control of quadrotors on SE2(3) IEEE Robot. Autom. Lett. 5(4), 5748–5755 (2020)

    Google Scholar 

  14. Ríos, H., Falcón, R., González, O.A., Dzul, A.: Continuous sliding-mode control strategies for quadrotor robust tracking: real-time application. IEEE Trans. Industr. Electron. 66(2), 1264–1272 (2019)

    Article  Google Scholar 

  15. Silva, A.L., Santos, D.A.: Fast nonsingular terminal sliding mode flight control for multirotor aerial vehicles. IEEE Trans. Aerosp. Electron. Syst. 56(6), 4288–4299 (2020)

    Article  Google Scholar 

  16. Zuo, Z.: Adaptive trajectory tracking control of a quadrotor unmanned aircraft. In: Proceedings of the 30th Chinese Control Conference, IEEE, Yantai, China (2011)

    Google Scholar 

  17. Chen, F., Wu, Q., Jiang, B., Tao, G.: A Reconfiguration scheme for quadrotor helicopter via simple adaptive control and quantum logic. IEEE Trans. Industr. Electron. 62(7), 4328–4335 (2015)

    Article  Google Scholar 

  18. Tian, B., Cui, J., Lu, H., Zuo, Z.: Adaptive finite-time attitude tracking of quadrotors with experiments and comparisons. IEEE Trans. Industr. Electron. 66(12), 9428–9438 (2019)

    Article  Google Scholar 

  19. Ganga, G., Dharmana, M.M.: MPC controller for trajectory tracking control of quadcopter. In: 2017 International Conference on Circuit, Power and Computing Technologies (ICCPCT), IEEE, Kollam, India (2017)

    Google Scholar 

  20. Torrente, G., Kaufmann, E., Föhn, P., Scaramuzza, D.: Data-driven MPC for Quadrotors. IEEE Robot. Autom. Lett. 6(2), 3769–3776 (2021)

    Article  Google Scholar 

  21. Selfridge, J.M., Tao, G.: Multivariable output feedback MRAC for a quadrotor UAV. In: 2016 American Control Conference (ACC), IEEE, Boston, MA, USA (2016)

    Google Scholar 

  22. Kayacan, E., Maslim, R.: Type-2 fuzzy logic trajectory tracking control of quadrotor VTOL aircraft with elliptic membership functions. IEEE/ASME Trans. Mechatron. 22(1), 339–348 (2017)

    Article  Google Scholar 

  23. Mohajerin, N., Waslander, S.L.: Multistep prediction of dynamic systems with recurrent neural networks. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3370–3383 (2019)

    Google Scholar 

  24. Lin, X.L., Wu, C.F., Chen, B.S.: Robust adaptive fuzzy tracking control for MIMO nonlinear stochastic poisson jump diffusion systems. IEEE Trans. Cybern. 49(8), 3116–3130 (2019)

    Article  Google Scholar 

  25. Zhou, L., Zhang, J., She, H., Jin, H.: Quadrotor UAV flight control via a novel saturation integral backstepping controller. Automatika 60, 193–206 (2019)

    Google Scholar 

  26. Zuo, Z., Wang, C.: Adaptive trajectory tracking control of output constrained multi-rotors systems. IET Control Theory Appl. 8(13), 1163–1174 (2014)

    Google Scholar 

Download references

Acknowledgments

This works is partly supported by the Natural Science Foundation of Liaoning, China under Grant 2019MS008, Education Committee Project of Liaoning, China under Grant LJ2019003.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Su, Z., Zhang, A., Wang, S. (2021). Flight Control for 6-DOF Quadrotor via Sliding Mode Integral Filter. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12837. Springer, Cham. https://doi.org/10.1007/978-3-030-84529-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84529-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84528-5

  • Online ISBN: 978-3-030-84529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics