Skip to main content

Multi-task Learning with Riemannian Optimization

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12837))

Included in the following conference series:

Abstract

Multi-task learning (MTL) is a promising research field of machine learning, in which the training process of the neural network is equivalent to multi-objective optimization. On one hand, MTL trains all the network weights simultaneously to converge the multi-task loss. On the other hand, multi-objective optimization aims to find the optimum solution, which satisfies the constraints and optimizes the vector of objective functions. Therefore, the performance of MTL is dominated by the computation of the multi-objective solution. This paper proposes a method based on Riemannian optimization to solve the multi-objective optimization in MTL. Firstly, multi-objective optimization is reduced to its Karush-Kuhn-Tucker (KKT) condition as the optimum solution of constrained quadratic optimization. Secondly, by mapping the Euclidean space of the constraint into manifold, the quadratic optimization is transformed to an unconstrained problem. Finally, Riemannian optimization algorithm is used to compute the solution of this problem, which gives a Pareto direction towards the KKT condition. We perform experiments on the MultiMNIST and Fashion MNIST datasets, and the experimental results demonstrate the efficiency of our method.

This work was supported by the Fundamental Research Funds for the Central Universities of China under Grant No. 20720190028.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caruana, R.: Multitask learning. In: Thrun, S., Pratt, L. (eds.) Learning to learn. Springer, Boston (1998). https://doi.org/10.1007/978-1-4615-5529-2_5

    Chapter  Google Scholar 

  2. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2650–2658 (2015)

    Google Scholar 

  3. Kokkinos, I.: UberNet: training a universal convolutional neural network for low-, mid-, and high-level vision using diverse datasets and limited memory. arXiv:1609.02132 (2017)

  4. Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., LeCun, Y.: OverFeat: integrated recognition, localization and detection using convolutional networks. arXiv:1312.6229 (2013)

  5. Désidéri, J.-A.: Multiple-gradient descent algorithm (MGDA) for multiobjective optimization. C.R. Math. 350(5), 313–318 (2012)

    Article  MathSciNet  Google Scholar 

  6. Sener, O., Koltun, V.: Multi-task learning as multi-objective optimization. arXiv:1810.04650 (2018)

  7. Sabour, S., Frosst, N., Hinton, G.E.: Dynamic routing between capsules. arXiv:1710.09819 (2017)

  8. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv:1708.07747 (2017)

  9. Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv:1706.05098 (2017)

  10. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1717–1724 (2014)

    Google Scholar 

  11. Martí, M., Maki A.: A multitask deep learning model for real-time deployment in embedded systems. arXiv:1711.00146 (2017)

  12. Bilen, H., Vedaldi, A.: Integrated perception with recurrent multi-task neural networks. arXiv:1606.01735 (2016)

  13. Collobert, R., Weston, J.: A unified architecture for natural language processing: deep neural networks with multitask learning. In: Proceedings of the 25th International Conference on Machine Learning, pp. 160–167 (2008)

    Google Scholar 

  14. Huang, J.-T., Li, J., Yu, D., Deng, L., Gong, Y.: Cross-language knowledge transfer using multilingual deep neural network with shared hidden layers. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 7304–7308 (2013)

    Google Scholar 

  15. Huang, Z., Li, J., Siniscalchi, S.M., Chen, I.-F., Wu, J., Lee, C.-H.: Rapid adaptation for deep neural networks through multi-task learning. In: Proceedings of the Annual Conference of the International Speech Communication Association, pp. 3625–3629 (2015)

    Google Scholar 

  16. Baxter, J.: A model of inductive bias learning. J. Artif. Intell. Res. 12, 149–198 (2000)

    Article  MathSciNet  Google Scholar 

  17. Li, C., Georgiopoulos, M., Anagnostopoulos, G.C.: Pareto-path multi-task multiple kernel learning. arXiv:1404.3190 (2014)

  18. Teichmann, M., Weber, M., Zoellner, M., Cipolla, R., Urtasun, R.: MultiNet: real-time joint semantic reasoning for autonomous driving. arXiv:1612.07695 (2016)

  19. Zhou, D., Wang, J., Jiang, B., Guo, H., Li, Y.: Multi-task multi-view learning based on cooperative multi-objective optimization. IEEE Access 6, 19465–19477 (2017)

    Article  Google Scholar 

  20. Kendall, A., Gal, Y., Cipolla, R.: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7482–7491 (2018)

    Google Scholar 

  21. Miettinen, K.: Nonlinear Multiobjective Optimization. Springer, New York (2012). https://doi.org/10.1007/978-1-4615-5563-6

    Book  MATH  Google Scholar 

  22. Ehrgott, M.: Multicriteria Optimization. Springer, Heidelberg (2005). https://doi.org/10.1007/3-540-27659-9

    Book  MATH  Google Scholar 

  23. Zhou, A., Zhang, Q., Jin, Y.: Approximating the set of pareto-optimal solutions in both the decision and objective spaces by an estimation of distribution algorithm. IEEE Trans. Evol. Comput. 13(5), 1167–1189 (2009)

    Article  Google Scholar 

  24. Mukhopadhyay, A., Bandyopadhyay, S., Maulik, U.: Multi-class clustering of cancer subtypes through SVM based ensemble of pareto-optimal solutions for gene marker identification. PLoS ONE 5(11), e13803 (2010)

    Article  Google Scholar 

  25. Suga, K., Kato, S., Hiyama, K.: Structural analysis of Pareto-optimal solution sets for multi-objective optimization: an application to outer window design problems using multiple objective genetic algorithms. Build. Environ. 45(5), 1144–1152 (2010)

    Article  Google Scholar 

  26. Poirion, F., Mercier, Q., Désidéri, J.-A.: Descent algorithm for nonsmooth stochastic multiobjective optimization. Comput. Optim. Appl. 68(2), 317–331 (2017). https://doi.org/10.1007/s10589-017-9921-x

    Article  MathSciNet  MATH  Google Scholar 

  27. Peitz, S., Dellnitz, M.: Gradient-based multiobjective optimization with uncertainties. In: Maldonado, Y., Trujillo, L., Schütze, O., Riccardi, A., Vasile, M. (eds.) NEO 2016. SCI, vol. 731, pp. 159–182. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-64063-1_7

    Chapter  Google Scholar 

  28. Boumal, N.: An introduction to optimization on smooth manifolds (2020)

    Google Scholar 

  29. Project webpage. https://github.com/NicolasBoumal/manopt

  30. Alimisis, F., Orvieto, A., Bécigneul, G., Lucchi, A.: A continuous-time perspective for modeling acceleration in Riemannian optimization. arXiv:1910.10782 (2019)

  31. Bonnabel, S.: Stochastic gradient descent on Riemannian manifolds. IEEE Trans. Autom. Control 58(9), 2217–2229 (2013)

    Article  MathSciNet  Google Scholar 

  32. Sun, Y., Gao, J., Hong, X., Mishra, B., Yin, B.: Heterogeneous tensor decomposition for clustering via manifold optimization. IEEE Trans. Pattern Anal. Mach. Intell. 38(3), 476–489 (2015)

    Article  Google Scholar 

  33. Kuhn, H.W., Tucker, A.W.: Nonlinear programming. In: Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability (1951)

    Google Scholar 

  34. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Song .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cai, T., Song, L., Li, G., Liao, M. (2021). Multi-task Learning with Riemannian Optimization. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12837. Springer, Cham. https://doi.org/10.1007/978-3-030-84529-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84529-2_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84528-5

  • Online ISBN: 978-3-030-84529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics