Skip to main content

PointPAVGG: An Incremental Algorithm for Extraction of Points’ Positional Feature Using VGG on Point Clouds

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12837))

Included in the following conference series:

  • 1599 Accesses

Abstract

Many works have been devoted to improving the accuracy of point cloud classification and segmentation, which are essential problems in computer vision. Although these works have achieved excellent performance using advanced feature extraction methods, it is still a challenging task to extract high-level features from disordered data in the form of point clouds. To tackle this issue, we propose a VGG-based network, called Point Positional Attention VGG (PointPAVGG) for 3D point cloud feature extracting and processing, which is inspired by the classical VGG network. Concretely, in order to combine global and local features, we extract the local point cloud geometric information by every sphere domain and analyze its global position score by our point attention (PA) module. This novel network, namely, PointPAVGG, with graph structure point cloud feature extraction and PA, is mainly presented and applied in point cloud classification as well as segmentation tasks. Comprehensive experiments carried out on ShapeNet and modelNet, which demonstrate that our methods deliver superior performance, showing state-of-the-art results in classification and segmentation tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. He, Q., Wang, Z., Zeng, H., et al.: SVGA-net: sparse voxel-graph attention network for 3D object detection from point clouds (2020)

    Google Scholar 

  2. Feng, Y., Zhang, Z., Zhao, X., Ji, R., Gao, Y.: GVCNN: group-view convolutional neural net-works for 3D shape recognition. In: CVPR, pp. 264–272 (2018). 1,2,5

    Google Scholar 

  3. Huang, X., Mei, G., Zhang, J.: Feature-metric registration: a fast semi-supervised approach for robust point cloud registration without correspondences (2020)

    Google Scholar 

  4. Guerrero, P., Kleiman, Y., Ovsjanikov, M., Mitra, N.J.: PCPNet learning local shape properties from raw point clouds. In: Computer Graphics Forum, no. 2, pp. 75–85. Wiley (2018)

    Google Scholar 

  5. Guo, H., Wang, J., Gao, Y., Li, J., Lu, H.: Multi-view 3D object retrieval with deep embedding network. IEEE Trans. Image Process. 25(12), 5526–5537 (2016)

    Article  MathSciNet  Google Scholar 

  6. Hermosilla, P., et al.: Monte Carlo convolution for learning on non-uniformly sampled point clouds. ACM Trans. Graph. (TOG) 37(6), 1–12 (2018)

    Article  Google Scholar 

  7. Hua, B.S., Tran, M.K., Yeung, S.K.: Pointwise convolutional neural net-works. In: Proceedings of CVPR, pp. 984–993 (2018)

    Google Scholar 

  8. Huang, F., Xu, C., Tu, X., Li, S.: Weight loss for point clouds classification. In: Journal of Physics: Conference Series, vol. 1229, p. 012045 (2019)

    Google Scholar 

  9. Li, R., Zhang, Y., Niu, D., et al.: PointVGG: graph convolutional network with progressive aggregating features on point clouds. Neurocomputing 429, 187–198 (2021). https://doi.org/10.1016/j.neucom.2020.10.086

    Article  Google Scholar 

  10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: Proceedings of ICLR, pp. 1–14 (2017)

    Google Scholar 

  11. Wang, C., Samari, B., Siddiqi, K.: Local spectral graph convolution for point set feature learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 56–71. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_4

    Chapter  Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E: ImageNet classification with deep convolutional neural net-works. In: NeurIPS, pp. 1106–1114 (2012). 1,4

    Google Scholar 

  13. Su, H., Maji, S., Kalogerakis, E., et al.: Multi-view convolutional neural networks for 3D shape recognition (2015)

    Google Scholar 

  14. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  15. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  16. Liu, Y., Fan, B., Xiang, S., Pan, C.: Relation-shape convolutional neural network for point cloud analysis. In: Proceedings of CVPR, pp. 8895–8904 (2019)

    Google Scholar 

  17. Yin, K., Huang, H., Cohen-Or, D., Zhang, H.: P2P-NET: bidirectional point displacement net for shape transform. ACM Trans. Graph. 37(4), 152:1-152:13 (2018)

    Article  MathSciNet  Google Scholar 

  18. Wu, Z., et al.: 3D ShapeNets: a deep representation for volumetric shapes. In: CVPR, pp. 1912–1920 (2015). 1,2,5,7

    Google Scholar 

  19. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: Proceedings of CVPR, pp. 652–660 (2017)

    Google Scholar 

  20. Li, R., Li, X., Heng, P.A., et al.: PointAugment: an auto-augmentation framework for point cloud classification. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE (2020)

    Google Scholar 

  21. Jiang, M., Wu, Y., Lu, C.: PointSIFT: a SIFT-like network module for 3D point cloud semantic segmentation. arXiv preprint arXiv:1807.00652 (2018)

  22. Maturana, D., Scherer, S.: VoxNet: a 3D convolutional neural network for real-time object recognition. In: IROS, pp. 922–928 (2015)

    Google Scholar 

  23. Shen, Y., Feng, C., Yang, Y., Tian, D.: Mining point cloud local structures by kernel correlation and graph pooling. In: CVPR, pp. 4548–4557 (2018). 1,2,5,6,8

    Google Scholar 

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of ICLR, pp. 1–14 (2015)

    Google Scholar 

  25. Ravanbakhsh, S., Schneider, J., Poczos, B.: Deep learning with sets and point clouds. In: ICLR, pp. 1–12 (2017)

    Google Scholar 

  26. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR, pp. 77–85 (2016). 1,2,5,6,8

    Google Scholar 

  27. Thomas, H., Qi, C.R., Deschaud, J.E., et al.: KPConv: flexible and deformable convolution for point clouds (2019)

    Google Scholar 

  28. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, pp. 5099–5108 (2017)

    Google Scholar 

  29. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  30. Wu, W., Qi, Z., Fuxin, L.: PointConv: deep convolutional networks on 3D point clouds. In: Proceedings of CVPR, pp. 9621–9630 (2019)

    Google Scholar 

Download references

Acknowledgements

This research was supported by Natural Science Foundation of Shandong province (No. ZR2019MF 013), Project of Jinan Scientific Research Leader’s Laboratory (No. 2018GXRC023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, Y., Zhang, C., Zhang, X., Wang, K., Zhang, Y., Zhao, X. (2021). PointPAVGG: An Incremental Algorithm for Extraction of Points’ Positional Feature Using VGG on Point Clouds. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Hussain, A. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12837. Springer, Cham. https://doi.org/10.1007/978-3-030-84529-2_60

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84529-2_60

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84528-5

  • Online ISBN: 978-3-030-84529-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics