Skip to main content

A Novel Hybrid Machine Learning Approach Using Deep Learning for the Prediction of Alzheimer Disease Using Genome Data

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12838))

Included in the following conference series:

Abstract

Genome-wide association studies are aimed at identifying associations between commonly occurring variations in a group of individuals and a phonotype, in which the Deoxyribonucleic acid is genotyped in the form of single nucleotide polymorphisms. Despite the exsistence of various research studies for the prediction of chronic diseases using human genome data, more investigations are still required. Machine learning algorithms are widely used for prediction and genome-wide association studies. In this research, Random Forest was utilised for selecting most significant single nucleotide polymorphisms associated to Alzheimer’s Disease. Deep learning model for the prediction of the disease was then developed. Our extesnive similation results indicated that this hybrid model is promising in predicting individuals that suffer from Alzheimer’s disease, achieving area under the curve of 0.9 and 0.93 using Convolutional Neural Network and Multilayer perceptron respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Alzheimer Report 2018. https://www.alzint.org/u/WorldAlzheimerReport2018.pdf, Accessed 15 Jan 2021

  2. Ford, A.: Alzheimer disease. Mol. Chem. Neuropathol. 28(1–3), 121–124 (1996). https://doi.org/10.1007/BF02815213

    Article  Google Scholar 

  3. Isik, A.T.: Late onset alzheimer’s disease in older people. Clin. Interv. Aging 5, 307 (2010)

    Article  Google Scholar 

  4. Williamson, J., Goldman, J., Marder, K.S.: Genetic aspects of alzheimer disease. Neurologist 15(2), 80–86 (2009). https://doi.org/10.1097/NRL.0b013e318187e76b

    Article  Google Scholar 

  5. Bekris, L.M., Yu, C.-E., Bird, T.D., Tsuang, D.W.: Review article: genetics of alzheimer disease. J. Geriatr. Psychiatry Neurol. 23(4), 213–227 (2010). https://doi.org/10.1177/0891988710383571

    Article  Google Scholar 

  6. Hofmann-Apitius, M., et al.: Bioinformatics mining and modeling methods for the identification of disease mechanisms in neurodegenerative disorders. Int. J. Molec. Sci. 16(12), 29179–29206 (2015). https://www.mdpi.com/1422-0067/16/12/26148

  7. Kim, J., Kim, J., Kwak, M.J., Bajaj, M.: Genetic prediction of type 2 diabetes using deep neural network. Clin. Genet. 93(4), 822–829 (2018). https://doi.org/10.1111/cge.13175

    Article  Google Scholar 

  8. Abdulaimma, B., Fergus, P., Chalmers, C., Montanez, C.C.: Deep learning and genome-wide association studies for the classification of type 2 diabetes, pp. 1-8. IEEE (2020)

    Google Scholar 

  9. Ghanem, S.I., Ghoneim, A.A., Ghanem, N.M., Ismail, M.A.: High performance computing for detecting complex diseases using deep learning. In: 2019 International Conference on Advances in the Emerging Computing Technologies, AECT 2019 (2020). https://doi.org/10.1109/AECT47998.2020.9194158, https://www.scopus.com/inward/record.uri?eid=2-s2.0-85092376858&doi=10.1109%2fAECT47998.2020.9194158&partnerID=40&md5=0252fbd3c9bf9226aaa8482e30f8aaec, https://ieeexplore.ieee.org/document/9194158/

  10. Urbanowicz, R., Kiralis, J., Sinnott-Armstrong, N., Heberling, T., Fisher, J., Moore, J.: GAMETES: a fast, direct algorithm for generating pure, strict, epistatic models with random architectures. BioData Mining 5(1) (2012). https://doi.org/10.1186/1756-0381-5-16

  11. Sun, T., Wei, Y., Chen, W., Ding, Y.: Genome-wide association study-based deep learning for survival prediction. Stat. Med. Article (2020). https://doi.org/10.1002/sim.8743

  12. Ghafouri-Fard, S., Taheri, M., Omrani, M.D., Daaee, A., Mohammad-Rahimi, H., Kazazi, H.: Application of single-nucleotide polymorphisms in the diagnosis of autism spectrum disorders: a preliminary study with artificial neural networks. J. Mol. Neurosci. 68(4), 515–521 (2019). https://doi.org/10.1007/s12031-019-01311-1

    Article  Google Scholar 

  13. Guo, X., Yu, N., Gu, F., Ding, X., Wang, J., Pan, Y.: Genome-wide interaction-based association of human diseases-a survey. Tsinghua Sci. Technol. 19(6), 596–616 (2014)

    Article  MathSciNet  Google Scholar 

  14. Bush, W.S.: Genome-wide association studies. In: Ranganathan, S., Gribskov, M., Nakai, K., Schönbach, C. (eds.) Encyclopedia of Bioinformatics and Computational Biology, pp. 235-241. Academic Press, Oxford (2019)

    Google Scholar 

  15. Clarke, G., Anderson, C., Pettersson, F., Cardon, L., Morris, A., Zondervan, K.: Basic statistical analysis in genetic case-control studies. Nat. Protocols 6(2), 121–133 (2011). https://doi.org/10.1038/nprot.2010.182

    Article  Google Scholar 

  16. Pearson, T.A., Manolio, T.A.: How to interpret a genome-wide association study. JAMA 299(11), 1335–1344 (2008)

    Article  Google Scholar 

  17. Witten, I.H., Frank, E., Hall, M.A.: Chapter 1 - what’s it all about? In: Witten, I.H., Frank, E., Hall, M.A. (eds.) Data Mining: Practical Machine Learning Tools and Techniques (Third Edition), pp. 3–38. Morgan Kaufmann, Boston (2011)

    Chapter  Google Scholar 

  18. Lin, E., et al.: A deep learning approach for predicting antidepressant response in major depression using clinical and genetic biomarkers. Front Psychiatry 9 (2018). https://doi.org/10.3389/fpsyt.2018.00290, (in eng)

  19. Okser, S., Pahikkala, T., Airola, A., Salakoski, T., Ripatti, S., Aittokallio, T.: Regularized machine learning in the genetic prediction of complex traits. PLoS Genet. 10(11), e1004754 (2014)

    Google Scholar 

  20. Emre Celebi, M., Aydin, K. (eds.): Unsupervised learning algorithms. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-24211-8

    Book  Google Scholar 

  21. Lopez, C., Tucker, S., Salameh, T., Tucker, C.: An unsupervised machine learning method for discovering patient clusters based on genetic signatures. J. Biomed. Inf. 85, 30–39 (2018). https://doi.org/10.1016/j.jbi.2018.07.004

    Article  Google Scholar 

  22. Vivian-Griffiths, T., et al.: Predictive modeling of schizophrenia from genomic data: Comparison of polygenic risk score with kernel support vector machines approach. Am. J. Med. Genet. B Neuropsychiatr. Genet. 180(1), 80–85 (2019)

    Article  Google Scholar 

  23. Laksshman, S., Bhat, R.R., Viswanath, V., Li, X.: DeepBipolar: Identifying genomic mutations for bipolar disorder via deep learning. Hum. Mutat. 38(9), 1217–1224 (2017)

    Article  Google Scholar 

  24. Yang, J., et al.: Common SNPs explain a large proportion of the heritability for human height. Nat. Genet. 42(7), 565–569 (2010)

    Article  Google Scholar 

  25. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol. 33(8), 831–838 (2015)

    Article  Google Scholar 

  26. Zhou, J., Troyanskaya, O.G.: Predicting effects of noncoding variants with deep learning–based sequence model. Nat. Methods 12(10), 931–934 (2015)

    Article  Google Scholar 

  27. Scholz, M., Kaplan, F., Guy, C.L., Kopka, J., Selbig, J.: Non-linear PCA: a missing data approach. Bioinformatics 21(20), 3887–3895 (2005)

    Article  Google Scholar 

  28. Yoon, K., Kwek, S.: An unsupervised learning approach to resolving the data imbalanced issue in supervised learning problems in functional genomics. In: Fifth International Conference on Hybrid Intelligent Systems (HIS 2005), p. 6. IEEE (2005)

    Google Scholar 

  29. Webster, J.A., et al.: Genetic control of human brain transcript expression in Alzheimer disease (in eng). Am. J. Hum. Genet. 84(4), 445–458 (2009). https://doi.org/10.1016/j.ajhg.2009.03.011

    Article  Google Scholar 

  30. Purcell, S., et al.: PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Gen. 81(3), 559–575 (2007). https://doi.org/10.1086/519795

    Article  Google Scholar 

  31. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  32. Cook, J., Mahajan, A., Morris, A.: Guidance for the utility of linear models in meta-analysis of genetic association studies of binary phenotypes. Eur. J. Hum. Gen. 25(2), 240–245 (2016). https://doi.org/10.1038/ejhg.2016.150

    Article  Google Scholar 

  33. Chang, M., He, L., Cai, L.: An overview of genome-wide association studies. In: Huang, Tao (ed.) Computational Systems Biology. MMB, vol. 1754, pp. 97–108. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-7717-8_6

    Chapter  Google Scholar 

  34. Curbelo, C., et al.: SAERMA: stacked autoencoder rule mining algorithm for the interpretation of epistatic interactions in GWAS for extreme obesity. IEEE Access 8, 112379–112392 (2020). https://doi.org/10.1109/ACCESS.2020.3002923

    Article  Google Scholar 

  35. Fergus, P., Montanez, C.C., Abdulaimma, B., Lisboa, P., Chalmers, C., Pineles, B.: Utilizing deep learning and genome wide association studies for epistatic-driven preterm birth classification in African-American women. IEEE/ACM Trans. Comput. Biol. Bioinf. 17(2), 668–678 (2020). Art no. 8454302, https://doi.org/10.1109/TCBB.2018.2868667

  36. Aggarwal, C.C.: Neural networks and deep learning. Springer 10, 978–983 (2018)

    Google Scholar 

  37. Yamashita, R., Nishio, M., Do, R.K.G., Togashi, K.: Convolutional neural networks: an overview and application in radiology. Insights Imag. 9(4), 611–629 (2018). https://doi.org/10.1007/s13244-018-0639-9

    Article  Google Scholar 

  38. Bush, W., Moore, J.: Chapter 11: genome-wide association studies. PLoS Comput. Biol. 8(12), e1002822 (2012). https://doi.org/10.1371/journal.pcbi.1002822

    Article  Google Scholar 

  39. Yin, B., et al.: Using the structure of genome data in the design of deep neural networks for predicting amyotrophic lateral sclerosis from genotype (in eng). Bioinformatics 35(14), i538–i547 (2019). https://doi.org/10.1093/bioinformatics/btz369

    Article  Google Scholar 

  40. Sharma, P., Singh, A.: Era of deep neural networks: a review. In: 2017 8th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 3–5 July 2017, pp. 1–5 (2017). https://doi.org/10.1109/ICCCNT.2017.8203938.

  41. Romero-Rosales, B.-L., Tamez-Pena, J.-G., Nicolini, H., Moreno-Treviño, M.-G., Trevino, V.: Improving predictive models for Alzheimer’s disease using GWAS data by incorporating misclassified samples modeling. PloS One 15(4), e0232103 (2020). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7179850/pdf/pone.0232103.pdf

  42. Jansen, I.E., et al.: Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer’s disease risk. Nat. Gen. 51(3), 404–413 (2019). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6836675/pdf/nihms-1031924.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Alatrany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alatrany, A., Hussain, A., Mustafina, J., Al-Jumeily, D. (2021). A Novel Hybrid Machine Learning Approach Using Deep Learning for the Prediction of Alzheimer Disease Using Genome Data. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12838. Springer, Cham. https://doi.org/10.1007/978-3-030-84532-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84532-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84531-5

  • Online ISBN: 978-3-030-84532-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics