Skip to main content

Deep Convolution Recurrent Neural Network for Predicting RNA-Protein Binding Preference in mRNA UTR Region

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12838))

Included in the following conference series:

  • 1392 Accesses

Abstract

mRNA translated region contains the genetic information needed to encode the protein, and the function of mRNA untranslated region is to regulate the process of protein translation. The binding of translation factors to specific sequences in the untranslated region can regulate the translation process. Predicting the binding between translation factor and mRNA sequences can help understand the mechanism of mRNA translation regulation. In this paper, We use CNN to extract local features, and LSTM to extract correlation features between different potential binding sites. By adjusting model structure, we tested the impact of CNN and LSTM on model performance. The results show that our model is better than the existing model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Klerk, E., AC’t, P.: Alternative mRNA transcription, processing, and translation: insights from RNA sequencing. Trends Genet. 31(3), 128–139 (2015)

    Article  Google Scholar 

  2. Inukai, S., Kock, K.H., Bulyk, M.L.: Transcription factor–DNA binding: beyond binding site motifs. Curr. Opin. Genet. Dev. 43, 110–119 (2017)

    Article  Google Scholar 

  3. Zaccara, S., Ries, R.J., Jaffrey, S.R.: Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol. 20(10), 608–624 (2019)

    Article  Google Scholar 

  4. Roux, P.P., Topisirovic, I.: Signaling pathways involved in the regulation of mRNA translation. Mol. Cell. Biol. 38(12), e00070-18 (2018)

    Google Scholar 

  5. Thelen, M.P., Kye, M.J.: The role of RNA binding proteins for local mRNA translation: implications in neurological disorders. Front. Mol. Biosci. 6, 161 (2020)

    Article  Google Scholar 

  6. Cioni, J.-M., et al.: Late endosomes act as mRNA translation platforms and sustain mitochondria in axons. Cell 176(1–2), 56–72, e15, (2019)

    Google Scholar 

  7. Leppek, K., Das, R., Barna, M.: Functional 5′ UTR mRNA structures in eukaryotic translation regulation and how to find them. Nat. Rev. Mol. Cell Biol. 19(3), 158 (2018)

    Article  Google Scholar 

  8. Slobodin, B.: Transcription impacts the efficiency of mRNA translation via co-transcriptional N6-adenosine methylation. Cell 169(2), 326–337, e12 (2017)

    Google Scholar 

  9. Genuth, N.R., Barna, M.: Heterogeneity and specialized functions of translation machinery: from genes to organisms. Nat. Rev. Genet. 19(7), 431–452 (2018)

    Article  Google Scholar 

  10. Donlin-Asp, P.G., Polisseni, C., Klimek, R., Heckel, A., Schuman, E.M.: Differential regulation of local mRNA dynamics and translation following long-term potentiation and depression. In: Proceedings of the National Academy of Sciences, vol. 118, issue number 13 (2021)

    Google Scholar 

  11. Feigerlovà, E., Battaglia-Hsu, S.F.: Role of post-transcriptional regulation of mRNA stability in renal pathophysiology: focus on chronic kidney disease. FASEB J. 31(2), 457–468 (2017)

    Article  Google Scholar 

  12. Romo, L., Ashar, A., Pfister, E., Aronin, N.: Alterations in mRNA 3′ UTR isoform abundance accompany gene expression changes in human Huntington’s disease brains. Cell Rep. 20(13), 3057–3070 (2017)

    Article  Google Scholar 

  13. Singh, P., Saha, U., Paira, S., Das, B.: Nuclear mRNA surveillance mechanisms: function and links to human disease. J. Mol. Biol. 430(14), 1993–2013 (2018)

    Article  Google Scholar 

  14. Garzia, A., Meyer, C., Morozov, P., Sajek, M., Tuschl, T.: Optimization of PAR-CLIP for transcriptome-wide identification of binding sites of RNA-binding proteins. Methods 118, 24–40 (2017)

    Article  Google Scholar 

  15. Uhl, M., Houwaart, T., Corrado, G., Wright, P.R., Backofen, R.: Computational analysis of CLIP-seq data. Methods 118, 60–72 (2017)

    Article  Google Scholar 

  16. Pfeiffer, F., Tolle, F., Rosenthal, M., Brändle, G.M., Ewers, J., Mayer, G.: Identification and characterization of nucleobase-modified aptamers by click-SELEX. Nat. Protoc. 13(5), 1153 (2018)

    Article  Google Scholar 

  17. Zhuo, Z., et al.: Recent advances in SELEX technology and aptamer applications in biomedicine. Int. J. Mol. Sci. 18(10), 2142 (2017)

    Article  Google Scholar 

  18. Kazan, H., Ray, D., Chan, E.T., Hughes, T.R., Morris, Q.: RNAcontext: a new method for learning the sequence and structure binding preferences of RNA-binding proteins. PLoS Comput Biol. 6(7),(2010)

    Google Scholar 

  19. Livi, C.M., Blanzieri, E.: Protein-specific prediction of mRNA binding using RNA sequences, binding motifs and predicted secondary structures. BMC Bioinform. 15(1), 1–11 (2014)

    Article  Google Scholar 

  20. Maticzka, D., Lange, S.J., Costa, F., Backofen, R.: GraphProt: modeling binding preferences of RNA-binding proteins. Genome Biol. 15(1), 1–18 (2014)

    Article  Google Scholar 

  21. Tian, C., Fei, L., Zheng, W., Xu, Y., Zuo, W., Lin, C.-W.: Deep learning on image denoising: an overview. Neural Netw.  131, 251–275 (2020)

    Google Scholar 

  22. Sorin, V., Barash, Y., Konen, E., Klang, E.: Deep learning for natural language processing in radiology—fundamentals and a systematic review. J. Am. Coll. Radiol. 17(5), 639–648 (2020)

    Article  Google Scholar 

  23. Zhang, Z., Geiger, J., Pohjalainen, J., Mousa, A.E.-D., Jin, W., Schuller, B.: Deep learning for environmentally robust speech recognition: an overview of recent developments. ACM Trans. Intell. Syst. Technol. (TIST) 9(5), 1–28 (2018)

    Article  Google Scholar 

  24. Grigorescu, S., Trasnea, B., Cocias, T., Macesanu, G.: A survey of deep learning techniques for autonomous driving. J. Field Robot. 37(3), 362–386 (2020)

    Article  Google Scholar 

  25. Alipanahi, B., Delong, A., Weirauch, M.T., Frey, B.J.: Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning. Nat. Biotechnol. 33(8), 831–838 (2015)

    Article  Google Scholar 

  26. Quang, D., Xie, X.: DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences. Nucleic Acids Res. 44(no. 11, pp. e107-e107, 2016.

    Article  Google Scholar 

  27. Shen, Z., Deng, S.-P., Huang, D.-S.: RNA-protein binding sites prediction via multi scale convolutional gated recurrent unit networks. IEEE/ACM Trans. Comput. Biol. Bioinf. 17(5), 1741–1750 (2019)

    Article  Google Scholar 

  28. Zhou, J., Troyanskaya, O.G.: Predicting effects of noncoding variants with deep learning–based sequence model. Nat. Methods 12(10), 931–934 (2015)

    Article  Google Scholar 

  29. Joulin, A., Grave, E., Bojanowski, P., Douze, M., Jégou, H., Mikolov, T.: Fasttext. zip: Compressing text classification models, arXiv preprint arXiv:1612.03651, (2016)

  30. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput Linguist. 5, 135–146 (2017)

    Article  Google Scholar 

  31. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text classification, arXiv preprint arXiv:1607.01759 (2016)

Download references

Acknowledgements

This work has been supported by the grant of National Natural Science Foundation of China (No. 62002189), supported by the grant of Natural Science Foundation of Shandong Province, China (No. ZR2020QF038).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, Z., Shao, Y., Yuan, L. (2021). Deep Convolution Recurrent Neural Network for Predicting RNA-Protein Binding Preference in mRNA UTR Region. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12838. Springer, Cham. https://doi.org/10.1007/978-3-030-84532-2_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84532-2_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84531-5

  • Online ISBN: 978-3-030-84532-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics