Skip to main content

An Abnormal Gene Detection Method Based on Selene

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12838))

Included in the following conference series:

  • 1399 Accesses

Abstract

When screening abnormal genes [7] (such as cancer genes), it is very difficult to only rely on the experience of bioinformatics scientists, so we usually use deep learning methods for calculation and processing. But for bioinformatics scientists with relatively weak programming experience, it is unrealistic for them to independently develop abnormal gene recognition models. A Selene-based abnormal gene detection system developed in this paper completely solves this problem. It can detect abnormal genes without writing a lot of code. This article uses DeepSea and DeepSea-AlexNet convolutional neural network models to realize the function of gene detection. DeepSea-AlexNet is a model constructed by combining the characteristics of the DeepSea network and the AlexNet network. It is very useful for improving the accuracy of identifying abnormal genes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shen, Y., et al.: Global profile of tRNA-derived small RNAs in gastric cancer patient plasma and identification of tRF-33-P4R8YP9LON4VDP as a new tumor suppressor. Int. J. Med. Sci. 18(7), 1570–1579 (2021)

    Article  Google Scholar 

  2. Jabbar, M.A., Abraham, A., Dogan, O., Madureira, A.M., Tiwari, S.: Deep Learning in Biomedical and Health Informatics: Current Applications and Possibilities. CRC Press, Boca Raton (2021)

    Book  Google Scholar 

  3. Eid, S.A., et al.: Gene expression profiles of diabetic kidney disease and neuropathy in eNOS knockout mice: predictors of pathology and RAS blockade effects. FASEB J. Official Publ. Fed. Am. Soc. Exp. Biol. 35(5), e21467 (2021)

    Google Scholar 

  4. Chen, K.M., Cofer, E.M., Zhou, J., Troyanskaya, O.G.: Selene: a PyTorch-based deep learning library for sequence data. Nat. Methods Tech. Life Sci. Chemists 16(4), 315–318 (2019)

    Google Scholar 

  5. Camacho, D.M., Collins, K.M., Powers, R.K., Costello, J.C., Collins, J.J.: Next-generation machine learning for biological networks. Cell 173(7), 1581–1592 (2018)

    Article  Google Scholar 

  6. Jaganathan, K., et al.: Predicting splicing from primary sequence with deep learning. Cell 176(3), 535–548.e24 (2019)

    Google Scholar 

  7. Xiong, H.Y., et al.: The human splicing code reveals new insights into the genetic determinants of disease. Science 347(6218), 1254806 (2015)

    Article  Google Scholar 

  8. Zheng, R., Dong, X., Wan, C., Shi, X., Zhang, X., Meyer, C.A.: Cistrome Data Browser and Toolkit: analyzing human and mouse genomic data using compendia of ChIP-seq and chromatin accessibility data. Quant. Biol. 8(3), 267–276 (2020). https://doi.org/10.1007/s40484-020-0204-7

    Article  Google Scholar 

  9. Sivanandan, R., Jayakumari, J.: A new CNN architecture for efficient classification of ultrasound breast tumor images with activation map clustering based prediction validation. Med. Biol. Eng. Comput. 59(4), 957–968 (2021). https://doi.org/10.1007/s11517-021-02357-3

    Article  Google Scholar 

  10. Luo, J., et al.: Improving the performance of multisubject motor imagery-based BCIs using twin cascaded softmax CNNs. J. Neural Eng. 18(3), 036024 (2021)

    Article  Google Scholar 

  11. Kamjam, M., Sivalingam, P., Deng, Z., Hong, K.: Deep sea actinomycetes and their secondary metabolites. Front. Microbiol. 8, 760 (2017)

    Article  Google Scholar 

  12. Lu, T., Yu, F., Xue, C., Han, B.: Identification, classification, and quantification of three physical mechanisms in oil-in-water emulsions using AlexNet with transfer learning. J. Food Eng. 288, 110220 (2021)

    Article  Google Scholar 

  13. Dzhezyan, G., Cecotti, H.: Symmetrical filters in convolutional neural networks. Int. J. Mach. Learn. Cybern. 12(7), 2027–2039 (2021). https://doi.org/10.1007/s13042-021-01290-z

    Article  Google Scholar 

  14. Haque, H.M.F., Rafsanjani, M., Arifin, F., Adilina, S., Shatabda, S.: SubFeat: feature subspacing ensemble classifier for function prediction of DNA, RNA and protein sequences. Comput. Biol. Chem. 92, 107489 (2021). (prepublish)

    Google Scholar 

  15. Infante, T., et al.: Machine learning and network medicine: a novel approach for precision medicine and personalized therapy in cardiomyopathies. J. Cardiovasc. Med. 22(6), 429–440 (2021)

    Article  Google Scholar 

  16. Tang, G., Teotia, S., Tang, X., Singh, D. (eds.): RNA-Based Technologies for Functional Genomics in Plants. CSPS, Springer, Cham (2021). https://doi.org/10.1007/978-3-030-64994-4

    Book  Google Scholar 

  17. Krupa, J., et al.: GPU coprocessors as a service for deep learning inference in high energy physics. Mach. Learn. Sci. Technol. 2(3), 035005 (2021)

    Article  Google Scholar 

  18. Rosa, D., MacDermid, J., Klubowicz, D.: A comparative performance analysis of the International classification of functioning, disability and health and the item-perspective classification framework for classifying the content of patient reported outcome measures. Health Qual. Life Outcomes 19(1), 132 (2021)

    Article  Google Scholar 

  19. Liu, Q., Piao, H., Wang, Y., Zheng, D., Wang, W.: Circulating exosomes in cardiovascular disease: novel carriers of biological information. Biomed. Pharmacother. = Biomedecine Pharmacotherapie 135, 111148 (2021)

    Google Scholar 

  20. Rahim, T., Hassan, S.A., Shin, S.Y.: A deep convolutional neural network for the detection of polyps in colonoscopy images. Biomed. Sig. Process. Control 68, 102654 (2021)

    Article  Google Scholar 

  21. Nikhil, K., Jojo, M.: Deep Learning with Python (2021)

    Google Scholar 

  22. Li, J., Wilkinson, J.L., Boxall, A.B.A.: Use of a large dataset to develop new models for estimating the sorption of active pharmaceutical ingredients in soils and sediments. J. Hazard. Mater. 415, 125688 (2021)

    Article  Google Scholar 

  23. Deorowicz, S., Danek, A., Kokot, M.: VCFShark: how to squeeze a VCF file. Bioinformatics (Oxford England) (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Q., Jiang, Y. (2021). An Abnormal Gene Detection Method Based on Selene. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12838. Springer, Cham. https://doi.org/10.1007/978-3-030-84532-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84532-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84531-5

  • Online ISBN: 978-3-030-84532-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics