Skip to main content

SCEC: A Novel Single-Cell Classification Method Based on Cell-Pair Ensemble Learning

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12838))

Included in the following conference series:

Abstract

With the development of single-cell sequencing technology, the increasing amount of single-cell transcription data enables a deeper understanding of cellular heterogeneity and mechanisms at the cell level. Single-cell type identification is a crucial step of single-cell RNA sequencing (scRNA-seq) data analysis. The classification of single-cells and the discovery of new cell types are of great significance for oncology, immunology, and developmental biology research. Various data preprocessing approaches and classification algorithms have been applied to scRNA-seq data analysis. However, single-cell type identification methods that integrate multiple dimensionality reduction methods and unsupervised classification are still rare. Here, we proposed SCEC (Single Cell Ensemble Classify), an ensemble learning based approach, to integrate the clustering results of different clustering methods and SCEC significantly improves type identification on several representative datasets. Furthermore, the consensus result given by SCEC also shows obvious advantages in the process of data visualization. The advantages in classification and visualization performance make SCEC a promising method for large-scale scRNA-seq data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qi, R., et al.: Clustering and classification methods for single-cell RNA-sequencing data. Brief. Bioinform. 21(4), 1196–1208 (2020)

    Article  Google Scholar 

  2. Grun, D., et al.: Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525(7568), 251–255 (2015)

    Article  Google Scholar 

  3. Kiselev, V.Y., Andrews, T.S., Hemberg, M.: Challenges in unsupervised clustering of single-cell RNA-seq data. Nat. Rev. Genet. 20(5), 273–282 (2019)

    Article  Google Scholar 

  4. Luecken, M.D., Theis, F.J.: Current best practices in single-cell RNA-seq analysis: a tutorial. Mol. Syst. Biol. 15(6), e8746 (2019)

    Article  Google Scholar 

  5. Yang, L., et al.: SAIC: an iterative clustering approach for analysis of single cell RNA-seq data. BMC Genomics 18(Suppl 6), 689 (2017)

    Article  Google Scholar 

  6. Kiselev, V.Y., et al.: SC3: consensus clustering of single-cell RNA-seq data. Nat. Meth. 14(5), 483–486 (2017)

    Article  MathSciNet  Google Scholar 

  7. Grun, D., et al.: De Novo prediction of stem cell identity using single-cell transcriptome data. Cell Stem Cell 19(2), 266–277 (2016)

    Article  Google Scholar 

  8. Herman, J.S., Sagar, G.D.: FateID infers cell fate bias in multipotent progenitors from single-cell RNA-seq data. Nat. Meth. 15(5), 379–386 (2018). https://doi.org/10.1038/nmeth.4662

  9. Lin, P., Troup, M., Ho, J.W.: CIDR: ultrafast and accurate clustering through imputation for single-cell RNA-seq data. Genome Biol. 18(1), 59 (2017)

    Article  Google Scholar 

  10. Zeisel, A., et al.: Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015)

    Article  Google Scholar 

  11. Guo, M., et al.: SINCERA: a pipeline for single-cell RNA-Seq profiling analysis. PLOS Comput. Biol. 11(11), e1004575 (2015)

    Article  Google Scholar 

  12. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theor. Exp. 2008(10), P10008 (2008). https://doi.org/10.1088/1742-5468/2008/10/P10008

  13. Ester, M., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining, Portland, Oregon, pp. 226–231. AAAI Press (1996)

    Google Scholar 

  14. Wang, B., et al.: Visualization and analysis of single-cell RNA-seq data by kernel-based similarity learning. Nat. Meth. 14(4), 414–416 (2017)

    Article  Google Scholar 

  15. Zheng, R., et al.: SinNLRR: a robust subspace clustering method for cell type detection by non-negative and low-rank representation. Bioinformatics 35(19), 3642–3650 (2019)

    Article  Google Scholar 

  16. Li, X., et al.: Deep learning enables accurate clustering with batch effect removal in single-cell RNA-seq analysis. Nat. Commun. 11(1), 2338 (2020)

    Article  Google Scholar 

  17. Wang, D., Gu, J.: VASC: dimension reduction and visualization of single-cell RNA-seq data by deep variational autoencoder. Genomics Proteomics Bioinf. 16(5), 320–331 (2018)

    Article  Google Scholar 

  18. Lin, Y., et al.: scClassify: hierarchical classification of cells. bioRxiv (2019)

    Google Scholar 

  19. Gierahn, T.M., et al.: Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat. Meth. 14(4), 395–398 (2017)

    Article  Google Scholar 

  20. Chu, L.-F., et al.: Single-cell RNA-seq reveals novel regulators of human embryonic stem cell differentiation to definitive endoderm. Genome Biol. 17(1), 1–20 (2016)

    Article  Google Scholar 

  21. Klein, A.M., et al.: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161(5), 1187–1201 (2015)

    Article  Google Scholar 

  22. Zeisel, A., et al.: Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347(6226), 1138–1142 (2015)

    Article  Google Scholar 

  23. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(11), 2579–2605 (2008)

    MATH  Google Scholar 

  24. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemom. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Article  Google Scholar 

  25. McInnes, L., Healy, J., Melville, J.: UMAP: uniform manifold approximation and projection for dimension reduction. arXiv preprint arXiv:1802.03426 (2018)

  26. Kramer, M.A.: Nonlinear principal component analysis using autoassociative neural networks. AIChE J. 37(2), 233–243 (1991)

    Google Scholar 

  27. Cox, M.A.A., Cox, T.F.: Multidimensional scaling. In: Chen, C., Härdle, W., Unwin, A. (eds.) Handbook of Data Visualization, pp. 315–347. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-33037-0_14

  28. Tenenbaum, J.B.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  29. Hartigan, J.A.: Clustering Algorithms. Wiley (1975)

    Google Scholar 

  30. Ward Jr., J.H.: Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc. 58(301), 236–244 (1963)

    Google Scholar 

  31. Reynolds, D.: Gaussian mixture models. In: Li, S.Z., Jain, A. (eds.) Encyclopedia of Biometrics, pp. 659–663. Springer, Boston (2009). https://doi.org/10.1007/978-0-387-73003-5_196

    Chapter  Google Scholar 

  32. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  33. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985)

    Article  Google Scholar 

  34. Strehl, A., Ghosh, J.: Cluster—a knowledge reuse framework for combining multiple partitions. J. Mach. Learn. Res. 3, 583–617 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgment

This work was supported by the National Nature Science Foundation of China under Grant No. 12001408, the Science Foundation of Wuhan Institute of Technology under Grant No. K201746, and by Graduate Innovative Fund of Wuhan Institute of Technology under Grant No. CX2020292.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fan, W., Peng, H., Luo, S., Fang, C., Li, Y. (2021). SCEC: A Novel Single-Cell Classification Method Based on Cell-Pair Ensemble Learning. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12838. Springer, Cham. https://doi.org/10.1007/978-3-030-84532-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84532-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84531-5

  • Online ISBN: 978-3-030-84532-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics