Skip to main content

ICNNMDA: An Improved Convolutional Neural Network for Predicting MiRNA-Disease Associations

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12838))

Included in the following conference series:

Abstract

An increasing number of works have validated that the expression of miRNA is associated with human diseases. miRNA expression profiles may become an indicator for clinical diagnosis, classification, grading and even prognosis of tumors and other diseases, and provide new targets for treatment. In this work, we presented an improved convolutional neural network model to predict miRNA-disease association (ICNNMDA). For capturing more feature of miRNAs and diseases, we designed feature cell to train ICNNMDA, which contains miRNA-disease associations information and three kinds of miRNAs and diseases similarity information. In addition, an improved convolutional neural network was presented which consists of three convolutional layers, three pooling layers and two fully-connected layers, where dropout mechanism was adopted in the first fully-connected layers. Finally, 5CV and a case study were conducted to validate the effectiveness of the proposed model. The results showed that ICNNMDA can effectively identify disease-related miRNAs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Victor, A.: The functions of animal microRNAs. Nature 431, 350–355 (2004)

    Article  Google Scholar 

  2. Bartel, D.P.: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281–297 (2004)

    Article  Google Scholar 

  3. He, L., et al.: A microRNA polycistron as a potential human oncogene. Nature 435, 828–833 (2005)

    Article  Google Scholar 

  4. Li, Y., et al.: HMDD v2.0: a database for experimentally supported human microRNA and disease associations. Nucleic Acids Res. 42(D1), D1070–D1074 (2014). https://doi.org/10.1093/nar/gkt1023

    Article  Google Scholar 

  5. Huang, Z., et al.: HMDD v3.0: a database for experimentally supported human microRNA–disease associations. Nucleic Acids Res. 47(D1), D1013–D1017 (2018). https://doi.org/10.1093/nar/gky1010

    Article  Google Scholar 

  6. Yang, Z., et al.: dbDEMC 2.0: updated database of differentially expressed miRNAs in human cancers. Nucleic Acids Res. 45(D1), D812–D818 (2016). https://doi.org/10.1093/nar/gkw1079

    Article  Google Scholar 

  7. Jiang, Q., et al.: miR2Disease: a manually curated database for microRNA deregulation in human disease. Nucleic Acids Res. 37, D98–104 (2009)

    Google Scholar 

  8. Manikandan, J., Aarthi, J.J., Kumar, S.D., Pushparaj, P.N.: Oncomirs: the potential role of non-coding microRNAs in understanding cancer. Bioinformation 2, 330–334 (2008)

    Article  Google Scholar 

  9. Calin, G., et al.: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. U.S.A. 99, 15524–15529 (2002)

    Article  Google Scholar 

  10. Blenkiron, C., et al.: MicroRNA expression profiling of human breast cancer identifies new markers of tumor subtype. Genome Biol. 8, R214 (2007)

    Article  Google Scholar 

  11. Garzon, R., Fabbri, M., Cimmino, A., Calin, G., Croce, C.: MicroRNA expression and function in cancer. Trends Mol. Med. 12, 580–587 (2006)

    Article  Google Scholar 

  12. Ji, C., Gao, X.Z., Ma, Q.W., Ni, J., Zheng, C.: AEMDA: inferring miRNA–disease associations based on deep autoencoder. Bioinformatics 37(1), 66–72 (2020). https://doi.org/10.1093/bioinformatics/btaa670

    Article  Google Scholar 

  13. Wu, Q.-W., Wang, Y.-T., Gao, Z., Zhang, M.-W., Ni, J.-C., Zheng, C.-H.: HGMDA: hypergraph for predicting MiRNA-disease association. In: Huang, D.-S., Jo, K.-H., Huang, Z.-K. (eds.) ICIC 2019. LNCS, vol. 11644, pp. 265–271. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26969-2_25

    Chapter  Google Scholar 

  14. Chen, X., Xie, D., Zhao, Q., You, Z.H.: MicroRNAs and complex diseases: from experimental results to computational models. Brief. Bioinform. 20, 515–539 (2019)

    Article  Google Scholar 

  15. Zhao, Y., Chen, X., Yin, J.: Adaptive boosting-based computational model for predicting potential miRNA-disease associations. Bioinformatics 35, 4730–4738 (2019)

    Article  Google Scholar 

  16. Zhang, X., Zou, Q., Rodriguez-Paton, A., Zeng, X.: Meta-path methods for prioritizing candidate disease miRNAs. IEEE/ACM Trans. Comput. Biol. Bioinform. 16, 283–291 (2019)

    Article  Google Scholar 

  17. Xuan, P., Shen, T., Wang, X., Zhang, T., Zhang, W.: Inferring disease-associated microRNAs in heterogeneous networks with node attributes. IEEE ACM Trans. Comput. Biol. Bioinf. 17, 1019–1031 (2020)

    Article  Google Scholar 

  18. Jiang, Q., Hao, Y., Wang, G.: Prioritization of disease microRNAs through a human phenome-microRNAome network. BMC Syst. Biol. 4, S2 (2010)

    Article  Google Scholar 

  19. Yang, Y., Fu, X., Qu, W., Xiao, Y., Shen, H.-B.: MiRGOFS: a Go based functional similarity measurement for miRNAs, with applications to the prediction of miRNA subcellular localization and miRNa disease association. Bioinformatics 34, 3547–3556 (2018)

    Article  Google Scholar 

  20. Chen, X., Zhang, D.H., You, Z.H.: A heterogeneous label propagation approach to explore the potential associations between miRNA and disease. J. Transl. Med. 16, 348 (2018)

    Article  Google Scholar 

  21. Qu, Y., Zhang, H., Liang, C., Ding, P., Luo, J.: SNMDA: A novel method for predicting microRNa disease associations based on sparse neighbourhood. J. Cell Mol. Med. 22, 5109–5120 (2018)

    Article  Google Scholar 

  22. Yu, Q., Zhang, H., Lyu, C., Liang, C.: LLCMDA: a novel method for predicting miRNA gene and disease relationship based on locality-constrained linear coding. Front. Genet. 9, 576 (2018). https://doi.org/10.3389/fgene.2018.00576

    Article  Google Scholar 

  23. Chen, X., Wang, L., Qu, J., Guan, N.N., Li, J.Q.: Predicting miRNA-disease association based on inductive matrix completion. Bioinformatics 34, 4256–4265 (2018)

    Google Scholar 

  24. Yu, S.P., et al.: MCLPMDA: a novel method for miRNA-disease association prediction based on matrix completion and label propagation. J. Cell Mol. Med. 23, 1427–1438 (2018)

    Article  Google Scholar 

  25. Zhong, Y., Xuan, P., Wang, X., Zhang, T., Li, J.: A non-negative matrix factorization based method for predicting disease-associated miRNAs in miRNA-disease bilayer network. Bioinformatics 34, 267–277 (2018)

    Article  Google Scholar 

  26. Xiao, Q., Luo, J., Liang, C., Cai, J., Ding, P.: A graph regularized non-negative matrix factorization method for identifying microRNA-disease associations. Bioinformatics 34, 239–248 (2018)

    Article  Google Scholar 

  27. Gao, Z., Wang, Y.-T., Qing-Wen, W., Ni, J.-C., Zheng, C.-H.: Graph regularized L2,1-nonnegative matrix factorization for miRNA-disease association prediction. BMC Bioinformatics 21(1), 61 (2020). https://doi.org/10.1186/s12859-020-3409-x

    Article  Google Scholar 

  28. Gong, Y., Niu, Y., Zhang, W., Li, X.: A network embedding-based multiple information integration method for the MiRNA-disease association prediction. BMC Bioinf. 20(1), 468 (2019). https://doi.org/10.1186/s12859-019-3063-3

    Article  Google Scholar 

  29. Qingwen, W., Wang, Y., Gao, Z., Ni, J., Zheng, C.: MSCHLMDA: multi-similarity based combinative hypergraph learning for predicting MiRNA-disease association. Front. Genet. 11, 354 (2020)

    Article  Google Scholar 

  30. Xuan, P., Sun, C., Zhang, T., Ye, Y., Shen, T., Dong, Y.: Gradient boosting decision tree-based method for predicting interactions between target genes and drugs. Front. Genet. 10, 459 (2019)

    Article  Google Scholar 

  31. Li, J., et al.: Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction. Bioinformatics 36, 2538–2546 (2020)

    Article  Google Scholar 

  32. Peng, J., et al.: A learning-based framework for miRNA-disease association identification using neural networks. Bioinformatics 35(21), 4364–4371 (2019)

    Article  Google Scholar 

  33. Xuan, P., Sun, H., Wang, X., Zhang, T., Pan, S.: Inferring the disease-associated miRNAs based on network representation learning and convolutional neural networks. Int. J. Mol. Sci. 20, 3648 (2019)

    Article  Google Scholar 

  34. Xuan, P., Dong, Y., Guo, Y., Zhang, T., Liu, Y.: Dual convolutional neural network based method for predicting disease-related miRNAs. Int. J. Mol. Sci. 19, 3732 (2018)

    Article  Google Scholar 

  35. Wang, D., Wang, J.Y., Lu, M.: Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases. Bioinformatics 26, 1644–1650 (2010)

    Article  Google Scholar 

  36. Gao, Z., et al.: A new method based on matrix completion and non-negative matrix factorization for predicting disease-associated miRNAs. IEEE/ACM Trans. Comput. Biol. Bioinf. (2020)

    Google Scholar 

  37. Xuan, P., et al.: Prediction of microRNAs associated with human diseases based on weighted K most similar neighbors. PLoS ONE 8, e70204–e70204 (2013)

    Article  Google Scholar 

  38. Tang, C., Zhou, H., Zheng, X., Zhang, Y., Sha, X.: Dual Laplacian regularized matrix completion for microRNA-disease associations prediction. RNA Biol. 16, 601–611 (2019)

    Article  Google Scholar 

  39. Ding, X., Xia, J.-F., Wang, Y.-T., Wang, J., Zheng, C.-H.: Improved inductive matrix completion method for predicting MicroRNA-disease associations. In: Huang, D.-S., Jo, K.-H., Huang, Z.-K. (eds.) ICIC 2019. LNCS, vol. 11644, pp. 247–255. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26969-2_23

    Chapter  Google Scholar 

  40. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. Commun. ACM 60, 84–90 (2017)

    Article  Google Scholar 

  41. Abdel-Hamid, O., et al.: Convolutional neural networks for speech recognition. IEEE-ACM Trans. Audio Speech Lang. Process. 22, 1533–1545 (2014)

    Article  Google Scholar 

  42. Jiang, Y., Liu, B., Yu, L., Yan, C., Bian, H.: Predict MiRNA-disease association with collaborative filtering. Neuroinformatics 16(3–4), 363–372 (2018)

    Article  Google Scholar 

  43. Shao, B., Liu, B., Yan, C.: SACMDA: MiRNA-disease association prediction with short acyclic connections in heterogeneous graph. Neuroinformatics 16(3–4), 373–382 (2018)

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by the Natural Science Foundation of Shandong Province (grant number ZR2020KC022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cun-Mei Ji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ni, RK., Gao, Z., Ji, CM. (2021). ICNNMDA: An Improved Convolutional Neural Network for Predicting MiRNA-Disease Associations. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12838. Springer, Cham. https://doi.org/10.1007/978-3-030-84532-2_40

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84532-2_40

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84531-5

  • Online ISBN: 978-3-030-84532-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics