Skip to main content

A Multi-graph Deep Learning Model for Predicting Drug-Disease Associations

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12838))

Included in the following conference series:

Abstract

Computational drug repositioning is essential in drug discovery and development. The previous methods basically utilized matrix calculation. Although they had certain effects, they failed to treat drug-disease associations as a graph structure and could not find out more in-depth features of drugs and diseases. In this paper, we propose a model based on multi-graph deep learning to predict unknown drug-disease associations. More specifically, the known relationships between drugs and diseases are learned by two graph deep learning methods. Graph attention network is applied to learn the local structure information of nodes and graph embedding is exploited to learn the global structure information of nodes. Finally, Gradient Boosting Decision Tree is used to combine the two characteristics for training. The experiment results reveal that the AUC is 0.9625 under the ten-fold cross-validation. The proposed model has excellent classification and prediction ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jarada, T.N., Rokne, J.G., Alhajj, R.: A review of computational drug repositioning: strategies, approaches, opportunities, challenges, and directions. J. Cheminf. 12(1), 1–23 (2020). https://doi.org/10.1186/s13321-020-00450-7

    Article  Google Scholar 

  2. Paul, S.M., et al.: How to improve R&D productivity: the pharmaceutical industry’s grand challenge. Nat. Rev. Drug Disc. 9, 203–214 (2010)

    Article  Google Scholar 

  3. Adams, C.P., Brantner, V.V.: Estimating the cost of new drug development: is it really $802 million? Health Aff. 25, 420–428 (2006)

    Article  Google Scholar 

  4. DiMasi, J.A., Hansen, R.W., Grabowski, H.G.: The price of innovation: new estimates of drug development costs. J. Health Econ. 22, 151–185 (2003)

    Article  Google Scholar 

  5. Luo, H., Li, M., Yang, M., Wu, F.-X., Li, Y., Wang, J.: Biomedical data and computational models for drug repositioning: a comprehensive review. Brief. Bioinf. 22, 1604 (2019)

    Article  Google Scholar 

  6. Luo, H., Li, M., Wang, S., Liu, Q., Li, Y., Wang, J.: Computational drug repositioning using low-rank matrix approximation and randomized algorithms. Bioinformatics 34, 1904–1912 (2018)

    Article  Google Scholar 

  7. Chen, Z.-H., You, Z.-H., Guo, Z.-H., Yi, H.-C., Luo, G.-X., Wang, Y.-B.: Prediction of drug-target interactions from multi-molecular network based on deep walk embedding model. Front. Bioeng. Biotechnol. 8, 338 (2020)

    Article  Google Scholar 

  8. Chen, Z.-H., You, Z.-H., Li, L.-P., Wang, Y.-B., Qiu, Y., Hu, P.-W.: Identification of self-interacting proteins by integrating random projection classifier and finite impulse response filter. BMC Genomics 20, 1–10 (2019)

    Article  Google Scholar 

  9. Ji, B.-Y., You, Z.-H., Jiang, H.-J., Guo, Z.-H., Zheng, K.: Prediction of drug-target interactions from multi-molecular network based on LINE network representation method. J. Transl. Med. 18, 1–11 (2020)

    Article  Google Scholar 

  10. Jiang, H.-J., Huang, Y.-A., You, Z.-H.: SAEROF: an ensemble approach for large-scale drug-disease association prediction by incorporating rotation forest and sparse autoencoder deep neural network. Sci. Rep. 10, 1–11 (2020)

    Google Scholar 

  11. Jiang, H.-J., Huang, Y.-A., You, Z.-H.: Predicting drug-disease associations via using gaussian interaction profile and kernel-based autoencoder. BioMed Res. Int. 2019, 1–11 (2019)

    Google Scholar 

  12. Jiang, H.-J., You, Z.-H., Huang, Y.-A.: Predicting drug− disease associations via sigmoid kernel-based convolutional neural networks. J. Transl. Med. 17, 382 (2019)

    Article  Google Scholar 

  13. Hu, L., Wang, X., Huang, Y.-A., Hu, P., You, Z.-H.: A survey on computational models for predicting protein–protein interactions. Brief. Bioinf. (2021)

    Google Scholar 

  14. Hu, L., Pan, X., Yan, H., Hu, P., He, T.: Exploiting higher-order patterns for community detection in attributed graphs. Integr. Comput.-Aided Eng. 28, 1–12 (2020)

    Google Scholar 

  15. Hu, L., Yang, S.: A fast algorithm to identify coevolutionary patterns from protein sequences based on tree-based data structure. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 2273–2278. IEEE (2019)

    Google Scholar 

  16. Zhao, B.-W., Zhang, P., You, Z.-H., Zhou, J.-R., Li, X.: Predicting LncRNA-miRNA interactions via network embedding with integrated structure and attribute information. In: Huang, D.-S., Jo, K.-H. (eds.) ICIC 2020. LNCS, vol. 12464, pp. 493–501. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60802-6_43

    Chapter  Google Scholar 

  17. Jiang, H.-J., You, Z.-H., Hu, L., Guo, Z.-H., Ji, B.-Y., Wong, L.: A highly efficient biomolecular network representation model for predicting drug-disease associations. In: Huang, D.-S., Premaratne, P. (eds.) ICIC 2020. LNCS (LNAI), vol. 12465, pp. 271–279. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60796-8_23

    Chapter  Google Scholar 

  18. Wang, L., You, Z.-H., Li, L.-P., Yan, X., Zhang, W.: Incorporating chemical sub-structures and protein evolutionary information for inferring drug-target interactions. Sci. Rep. 10, 1–11 (2020)

    Google Scholar 

  19. Wang, L., You, Z.-H., Chen, X., Yan, X., Liu, G., Zhang, W.: Rfdt: a rotation forest-based predictor for predicting drug-target interactions using drug structure and protein sequence information. Curr. Protein Pept. Sci. 19, 445–454 (2018)

    Article  Google Scholar 

  20. Wang, L., et al.: A computational-based method for predicting drug–target interactions by using stacked autoencoder deep neural network. J. Comput. Biol. 25, 361–373 (2018)

    Article  MathSciNet  Google Scholar 

  21. Zhang, P., Zhao, B.-W., Wong, L., You, Z.-H., Guo, Z.-H., Yi, H.-C.: A novel computational method for predicting LncRNA-disease associations from heterogeneous information network with SDNE embedding model. In: Huang, D.-S., Jo, K.-H. (eds.) ICIC 2020. LNCS, vol. 12464, pp. 505–513. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60802-6_44

    Chapter  Google Scholar 

  22. Gottlieb, A., Stein, G.Y., Ruppin, E., Sharan, R.: PREDICT: a method for inferring novel drug indications with application to personalized medicine. Mol. Syst. Biol. 7, 496 (2011)

    Article  Google Scholar 

  23. Wang, Y., Chen, S., Deng, N., Wang, Y.: Drug repositioning by kernel-based integration of molecular structure, molecular activity, and phenotype data. PloS one 8, e78518 (2013)

    Google Scholar 

  24. Dai, W., et al.: Matrix factorization-based prediction of novel drug indications by integrating genomic space. Comput. Math. Methods Med. 2015, 1–9 (2015)

    Article  Google Scholar 

  25. Yang, J., Li, Z., Fan, X., Cheng, Y.: Drug–disease association and drug-repositioning predictions in complex diseases using causal inference–probabilistic matrix factorization. J. Chem. Inf. Model. 54, 2562–2569 (2014)

    Article  Google Scholar 

  26. Zeng, X., Zhu, S., Liu, X., Zhou, Y., Nussinov, R., Cheng, F.: deepDR: a network-based deep learning approach to in silico drug repositioning. Bioinformatics 35, 5191–5198 (2019)

    Article  Google Scholar 

  27. Wang, L., You, Z.-H., Li, Y.-M., Zheng, K., Huang, Y.-A.: GCNCDA: a new method for predicting circRNA-disease associations based on Graph Convolutional Network Algorithm. PLOS Comput. Biol. 16, e1007568 (2020)

    Google Scholar 

  28. Li, J., Zhang, S., Liu, T., Ning, C., Zhang, Z., Zhou, W.: Neural inductive matrix completion with graph convolutional networks for miRNA-disease association prediction. Bioinformatics 36, 2538–2546 (2020)

    Article  Google Scholar 

  29. Jiang, M., et al.: Drug–target affinity prediction using graph neural network and contact maps. RSC Adv. 10, 20701–20712 (2020)

    Article  Google Scholar 

  30. Wang, B., Lyu, X., Qu, J., Sun, H., Pan, Z., Tang, Z.: GNDD: a graph neural network-based method for drug-disease association prediction. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1253–1255. IEEE (2019)

    Google Scholar 

  31. Sun, M., Zhao, S., Gilvary, C., Elemento, O., Zhou, J., Wang, F.: Graph convolutional networks for computational drug development and discovery. Brief. Bioinf. 21, 919–935 (2020)

    Article  Google Scholar 

  32. Zhao, T., Hu, Y., Valsdottir, L.R., Zang, T., Peng, J.: Identifying drug–target interactions based on graph convolutional network and deep neural network. Briefings in Bioinformatics (2020)

    Google Scholar 

  33. Torng, W., Altman, R.B.: Graph convolutional neural networks for predicting drug-target interactions. J. Chem. Inf. Model. 59, 4131–4149 (2019)

    Article  Google Scholar 

  34. Hu, L., Chan, K.C., Yuan, X., Xiong, S.: A variational Bayesian framework for cluster analysis in a complex network. IEEE Trans. Knowl. Data Eng. 32, 2115–2128 (2019)

    Article  Google Scholar 

  35. Guo, Z.-H., You, Z.-H., Wang, Y.-B., Huang, D.-S., Yi, H.-C., Chen, Z.-H.: Bioentity2vec: attribute-and behavior-driven representation for predicting multi-type relationships between bioentities. GigaScience 9, giaa032 (2020)

    Google Scholar 

  36. Yi, H.-C., You, Z.-H., Huang, D.-S., Guo, Z.-H., Chan, K.C., Li, Y.: Learning representations to predict intermolecular interactions on large-scale heterogeneous molecular association network. Iscience 23, 101261 (2020)

    Article  Google Scholar 

  37. Wong, L., You, Z.-H., Guo, Z.-H., Yi, H.-C., Chen, Z.-H., Cao, M.-Y.: MIPDH: a novel computational model for predicting microRNA–mRNA interactions by DeepWalk on a heterogeneous network. ACS Omega 5, 17022–17032 (2020)

    Article  Google Scholar 

  38. Huang, Y.-A., Hu, P., Chan, K.C., You, Z.-H.: Graph convolution for predicting associations between miRNA and drug resistance. Bioinformatics 36, 851–858 (2020)

    Article  Google Scholar 

  39. Yu, Z., Huang, F., Zhao, X., Xiao, W., Zhang, W.: Predicting drug–disease associations through layer attention graph convolutional network. Brief. Bioinf. (2020)

    Google Scholar 

  40. Guo, Z.-H., Yi, H.-C., You, Z.-H.: Construction and comprehensive analysis of a molecular association network via lncRNA–miRNA–disease–drug–protein graph. Cells 8, 866 (2019)

    Article  Google Scholar 

  41. Yue, X., et al.: Graph embedding on biomedical networks: methods, applications and evaluations. Bioinformatics 36, 1241–1251 (2020)

    Article  Google Scholar 

  42. Guo, Z.-H., You, Z.-H., Huang, D.-S., Yi, H.-C., Chen, Z.-H., Wang, Y.-B.: A learning based framework for diverse biomolecule relationship prediction in molecular association network. Commun. Biol. 3, 1–9 (2020)

    Article  Google Scholar 

  43. Zhao, B.-W., et al.: A novel method to predict drug-target interactions based on large-scale graph representation learning. Cancers 13, 2111 (2021)

    Article  Google Scholar 

  44. Guo, Z.-H., et al.: MeSHHeading2vec: a new method for representing MeSH headings as vectors based on graph embedding algorithm. Brief. Bioinform. 22, 2085–2095 (2021)

    Article  Google Scholar 

  45. Guo, Z.-H., You, Z.-H., Yi, H.-C.: Integrative construction and analysis of molecular association network in human cells by fusing node attribute and behavior information. Molec. Therapy-Nucleic Acids 19, 498–506 (2020)

    Article  Google Scholar 

  46. Zhao, B.-W., You, Z.-H., Wong, L., Zhang, P., Li, H.-Y., Wang, L.: MGRL: predicting drug-disease associations based on multi-graph representation learning. Front. Genet. 12, 491 (2021)

    Google Scholar 

  47. Wishart, D.S., et al.: DrugBank 5.0: a major update to the DrugBank database for 2018. Nucl. Acids Res. 46, D1074-D1082 (2017)

    Google Scholar 

  48. Hamosh, A., Scott, A.F., Amberger, J., Bocchini, C., Valle, D., McKusick, V.A.: Online mendelian inheritance in man (OMIM), a knowledgebase of human genes and genetic disorders. Nucl. Acids Res. 30, 52–55 (2002)

    Article  Google Scholar 

  49. Van Der Maaten, L., Postma, E., Van den Herik, J.: Dimensionality reduction: a comparative. J Mach. Learn. Res. 10, 13 (2009)

    Google Scholar 

  50. Wang, Y., Yao, H., Zhao, S.: Auto-encoder based dimensionality reduction. Neurocomputing 184, 232–242 (2016)

    Article  Google Scholar 

  51. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks (2017). arXiv preprint arXiv:1710.10903

  52. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  53. Manoochehri, H.E., Nourani, M.: Drug-target interaction prediction using semi-bipartite graph model and deep learning. BMC Bioinf. 21, 1–16 (2020)

    Google Scholar 

  54. Zhang, Y., Qiao, S., Lu, R., Han, N., Liu, D., Zhou, J.: How to balance the bioinformatics data: pseudo-negative sampling. BMC Bioinf. 20, 1–13 (2019)

    Article  Google Scholar 

  55. Yang, M., Luo, H., Li, Y., Wang, J.: Drug repositioning based on bounded nuclear norm regularization. Bioinformatics 35, i455–i463 (2019)

    Article  Google Scholar 

  56. Luo, H., et al.: Drug repositioning based on comprehensive similarity measures and bi-random walk algorithm. Bioinformatics 32, 2664–2671 (2016)

    Article  Google Scholar 

  57. Martinez, V., Navarro, C., Cano, C., Fajardo, W., Blanco, A.: DrugNet: network-based drug–disease prioritization by integrating heterogeneous data. Artif. Intell. Med. 63, 41–49 (2015)

    Article  Google Scholar 

  58. Wang, W., Yang, S., Li, J.: Drug target predictions based on heterogeneous graph inference. In: Biocomputing 2013, pp. 53–64. World Scientific (2013)

    Google Scholar 

Download references

Acknowledgement

This work is supported in part by the major science and technology projects in Xinjiang Uygur Autonomous Region, under Grant 2020A03004–4, The authors would like to thank all the guest editors and anonymous reviewers for their constructive advices.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhu-Hong You .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, BW., You, ZH., Hu, L., Wong, L., Ji, BY., Zhang, P. (2021). A Multi-graph Deep Learning Model for Predicting Drug-Disease Associations. In: Huang, DS., Jo, KH., Li, J., Gribova, V., Premaratne, P. (eds) Intelligent Computing Theories and Application. ICIC 2021. Lecture Notes in Computer Science(), vol 12838. Springer, Cham. https://doi.org/10.1007/978-3-030-84532-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84532-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84531-5

  • Online ISBN: 978-3-030-84532-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics