Abstract
Emerging technologies, like self-driving cars, drones, and the Internet-of-Things must not impose threats to people, neither due to accidental failures (safety), nor due to malicious attacks (security). As historically separated fields, safety and security are often analyzed in isolation. They are, however, heavily intertwined: measures that increase safety often decrease security and vice versa. Also, security vulnerabilities often cause safety hazards, e.g. in autonomous cars. Therefore, for effective decision-making, safety and security must be considered in combination.
This paper discusses three major challenges that a successful integration of safety and security faces: (1) The complex interaction between safety and security (2) The lack of efficient algorithms to compute system-level risk metrics (3) The lack of proper risk quantification methods. We will point out several research directions to tackle these challenges, exploiting novel combinations of mathematical game theory, stochastic model checking, as well as the Bayesian, fuzzy, and Dempster-Schafer frameworks for uncertainty reasoning. Finally, we report on early results in these directions.
This work was partially funded by ERC Consolidator Grant 864075 (CAESAR).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Since we require \(\mathbin {\vartriangle }\) to be commutative, \( D \) is in fact a commutative semiring. Further, rings often include a neutral element for disjunction and an absorbing element for conjunction, but these are not needed in Definition 5.
References
Amorim, T., Schneider, D., Nguyen, V.Y., Schmittner, C., Schoitsch, E.: Five major reasons why safety and security haven’t married (yet). ERCIM News 102, 16–17 (2015)
Arnold, F., Guck, D., Kumar, R., Stoelinga, M.: Sequential and parallel attack tree modelling. In: Koornneef, F., van Gulijk, C. (eds.) SAFECOMP 2015. LNCS, vol. 9338, pp. 291–299. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24249-1_25
Avizienis, A., Laprie, J.C., Randell, B., Landwehr, C.E.: Basic concepts and taxonomy of dependable and secure computing. IEEE Trans. Dependable Sec. Comput. 1, 11–33 (2004)
Barlow, R.E., Proschan, F.: Statistical Theory of Reliability and Life Testing: Probability Models. International Series in Decision Processes. Holt, Rinehart and Winston, New York (1975)
Bernsmed, K., Frøystad, C., Meland, P.H., Nesheim, D.A., Rødseth, Ø.J.: Visualizing cyber security risks with bow-tie diagrams. In: Liu, P., Mauw, S., Stølen, K. (eds.) GraMSec 2017. LNCS, vol. 10744, pp. 38–56. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-74860-3_3
Bobbio, A., Egidi, L., Terruggia, R.: A methodology for qualitative/quantitative analysis of weighted attack trees. IFAC 46(22), 133–138 (2013)
Bozzano, M., et al.: A model checker for AADL. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 562–565. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14295-6_48
Brocke, J., Simons, A., Niehaves, B., Riemer, K., Plattfaut, R., Cleven, A.: Reconstructing the giant: on the importance of rigour in documenting the literature search process. In: ECIS (2009)
Budde, C.E., Stoelinga, M.: Efficient algorithms for quantitative attack tree analysis. In: CSF, pp. 501–515. IEEE Computer Society (2021). ISSN: 2374-8303. https://doi.org/10.1109/CSF51468.2021.00041
Budde, C.E., Kolb, C., Stoelinga, M.: Attack trees vs. fault trees: two sides of the same coin from different currencies. In: QEST (to appear)
Byres, E.J., Franz, M., Miller, D.: The use of attack trees in assessing vulnerabilities in SCADA systems. In: Proceedings of the International Infrastructure Survivability Workshop, pp. 3–10. Citeseer (2004)
Chockalingam, S., Hadžiosmanović, D., Pieters, W., Teixeira, A., van Gelder, P.: Integrated safety and security risk assessment methods: a survey of key characteristics and applications. In: Havarneanu, G., Setola, R., Nassopoulos, H., Wolthusen, S. (eds.) CRITIS 2016. LNCS, vol. 10242, pp. 50–62. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71368-7_5
Clifton, E., et al.: Fault tree analysis-a history. In: Proceedings of the 17th International Systems Safety Conference, pp. 1–9 (1999)
Commission, I.E., et al.: IEC 61025: Fault tree analysis. IEC Standards (2006)
Dalton, G.C., Mills, R.F., Colombi, Raines, R.A.: Analyzing attack trees using generalized stochastic Petri nets. In: 2006 IEEE Information Assurance Workshop, pp. 116–123 (2006)
Dissaux, P., Singhoff, F., Lemarchand, L., Tran, H., Atchadam, I.: Combined real-time, safety and security model analysis. In: ERTSS (2020)
Dugan, J.B., Bavuso, S.J., Boyd, M.A.: Dynamic fault-tree models for fault-tolerant computer systems. IEEE Trans. Reliab. 41(3), 363–377 (1992)
Fovino, I.N., Masera, M., De Cian, A.: Integrating cyber attacks within fault trees. Reliab. Eng. Syst. Saf. 94(9), 1394–1402 (2009)
Fraile, M., Ford, M., Gadyatskaya, O., Kumar, R., Stoelinga, M., Trujillo-Rasua, R.: Using attack-defense trees to analyze threats and countermeasures in an ATM: a case study. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016. LNBIP, vol. 267, pp. 326–334. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48393-1_24
Friedberg, I., McLaughlin, K., Smith, P., Laverty, D., Sezer, S.: STPA-SafeSec: Safety and security analysis for cyber-physical systems. J. Inf. Secur. Appl. 34, 183–196 (2017)
ISO/IEC 25010:2011, S., software engineering: Systems and software quality requirements and evaluation (square). System and software quality models (2011)
Junges, S., Guck, D., Katoen, J., Stoelinga, M.: Uncovering dynamic fault trees. In: 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), pp. 299–310 (2016)
Jürgenson, A., Willemson, J.: Computing exact outcomes of multi-parameter attack trees. In: Meersman, R., Tari, Z. (eds.) OTM 2008. LNCS, vol. 5332, pp. 1036–1051. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88873-4_8
Kahneman, D.: A perspective on judgment and choice: mapping bounded rationality. Am. Psychol. 58(9), 697 (2003)
Kimelman, D., Kimelman, M., Mandelin, D., Yellin, D.M.: Bayesian approaches to matching architectural diagrams. Trans. Software Eng. 36(2), 248–274 (2010)
Kolb, C., Nicoletti, S.M., Peppelman, M., Stoelinga, M.: Model-based safety and security co-analysis: a survey. In: arXiv (2021)
Kordy, B., Mauw, S., Radomirović, S., Schweitzer, P.: Attack-defense trees. J. Logic Comput. 24(1), 55–87 (2012)
Kordy, B., Piètre-Cambacédès, L., Schweitzer, P.: DAG-based attack and defense modeling: don’t miss the forest for the attack trees. Comput. Sci. Rev. 13–14, 1–38 (2014)
Kordy, B., Wideł, W.: On quantitative analysis of attack–defense trees with repeated labels. In: Bauer, L., Küsters, R. (eds.) POST 2018. LNCS, vol. 10804, pp. 325–346. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89722-6_14
Kornecki, A.J., Subramanian, N., Zalewski, J.: Studying interrelationships of safety and security for software assurance in cyber-physical systems: approach based on Bayesian belief networks. In: 2013 FedCSIS, pp. 1393–1399. IEEE (2013)
Kriaa, S., Bouissou, M., Colin, F., Halgand, Y., Pietre-Cambacedes, L.: Safety and security interactions modeling using the BDMP Formalism: case study of a pipeline. In: Bondavalli, A., Di Giandomenico, F. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 326–341. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10506-2_22
Kriaa, S., Pietre-Cambacedes, L., Bouissou, M., Halgand, Y.: A survey of approaches combining safety and security for industrial control systems. Reliab. Eng. Syst. Saf. 139, 156–178 (2015)
Kumar, R., Stoelinga, M.: Quantitative security and safety analysis with attack-fault trees. In: 2017 IEEE 18th International Symposium on High Assurance Systems Engineering (HASE), pp. 25–32 (2017)
Lee, W., Grosh, D., Tillman, F., Lie, C.: Fault tree analysis, methods, and applications: a review. IEEE Trans. Reliab. R-34(3), 194–203 (1985)
Mauw, S., Oostdijk, M.: Foundations of attack trees. In: Won, D.H., Kim, S. (eds.) ICISC 2005. LNCS, vol. 3935, pp. 186–198. Springer, Heidelberg (2006). https://doi.org/10.1007/11734727_17
Nicol, D.M., H.Sanders, W., Trivedi, K.S.: Model-based evaluation: From dependability to security. IEEE Trans. Dep. Sec. Comput. 1(1), 48–65 (2004)
Nielsen, D.S.: The Cause/Consequence Diagram Method as a Basis for Quantitative Accident Analysis. Risø National Laboratory (1971)
Nigam, V., Pretschner, A., Ruess, H.: Model-based safety and security engineering (2019)
Organization, I.S.: ISO/dis 26262: Road vehicles, functional safety. Technical report (2009)
Pedroza, G., Apvrille, L., Knorreck, D.: AVATAR: A SysML environment for the formal verification of safety and security properties. In: 2011 NOTERE, pp. 1–10. IEEE (2011)
Rauzy, A.: New algorithms for fault trees analysis. Reliab. Eng. Syst. Saf. 40(3), 203–211 (1993)
Roth, M., Liggesmeyer, P.: Modeling and analysis of safety-critical cyber physical systems using state/event fault trees. In: SAFECOMP 2013 (2013)
Roudier, Y., Apvrille, L.: SysML-Sec: A model driven approach for designing safe and secure systems. In: MODELSWARD
Ruijters, E., Guck, D., Drolenga, P., Stoelinga, M.: Fault maintenance trees: reliability centered maintenance via statistical model checking. In: 2016 Annual Reliability and Maintainability Symposium (RAMS), pp. 1–6 (2016)
Ruijters, E., Stoelinga, M.: Fault tree analysis: a survey of the state-of-the-art in modeling, analysis and tools. Comput. Sci. Rev. 15–16, 29–62 (2015)
Steiner, M., Liggesmeyer, P.: Combination of safety and security analysis - finding security problems that threaten the safety of a system (2016)
Watson, H.: Launch control safety study. Technical Report, Section VII, Vol. 1. Bell Labs (1961)
Zampino, E.J.: Application of fault-tree analysis to troubleshooting the NASA GRC icing research tunnel. In: Annual Reliability and Maintainability Symposium, 2001 Proceedings, pp. 16–22 (2001)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Stoelinga, M., Kolb, C., Nicoletti, S.M., Budde, C.E., Hahn, E.M. (2021). The Marriage Between Safety and Cybersecurity: Still Practicing. In: Laarman, A., Sokolova, A. (eds) Model Checking Software. SPIN 2021. Lecture Notes in Computer Science(), vol 12864. Springer, Cham. https://doi.org/10.1007/978-3-030-84629-9_1
Download citation
DOI: https://doi.org/10.1007/978-3-030-84629-9_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-84628-2
Online ISBN: 978-3-030-84629-9
eBook Packages: Computer ScienceComputer Science (R0)