Skip to main content

Verifying Pipeline Implementations in OpenMP

  • Conference paper
  • First Online:
Model Checking Software (SPIN 2021)

Abstract

OpenMP is a popular API for the development of parallel, shared memory programs and allows programmers to easily ready their programs to utilize modern multi-core processors. However, OpenMP-compliant programs do not guarantee that the OpenMP parallelization is functionally equivalent to a sequential execution of the program. Therefore, several approaches analyze OpenMP programs. While some approaches check functional equivalence, they are either general purpose approaches, which ignore the structure of the program and the design pattern applied for parallelization, or they focus on parallelized for-loops. In this paper, we propose a verification approach that aims at pipeline parallelism. To show functional equivalence, our approach mainly computes the dependencies that a sequential execution imposes on the pipeline stages and checks whether these dependencies are incorporated in the OpenMP parallelzation. We implemented our verification approach in a prototype tool and evaluated it on some examples. Our evaluation shows that our approach soundly detects incorrect pipeline implementations.

This work was funded by the Hessian LOEWE initiative within the Software-Factory 4.0 project.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In iteration i, the second task reads memory location b[i] after it is written by the first task. Similarly, the first task reads memory location a[i-1] in iteration i after the second task writes to it in iteration \(i-1\).

  2. 2.

    Note that we currently do not support taskwait directives with depend clauses.

  3. 3.

    In general, the constraints apply to sibling tasks only. Due to the construction of tasks in parallel pipeline implementations that we support, all tasks are siblings.

  4. 4.

    The OpenMP standard also allows other variants of the depend clause but we stick to these because they are the main ones used when realizing the pipeline pattern. Ignoring other types is sound but can lead to false positives.

  5. 5.

    Currently, we support for and while loops.

  6. 6.

    Note that Algorithm 1 assumes, but does not check that the checked code segment follows the pipeline structure described in the previous section. Therefore, its result is only reliable for those segments.

  7. 7.

    In contrast, leaving out some of those edges only makes our approach imprecise.

  8. 8.

    Note that Fig. 2b does not contain dependencies between tasks T2 and T1 and tasks T2 and T3 because T3 and T1 are generated before T1.

  9. 9.

    The same holds for pairs of tasks and statements.

  10. 10.

    While one can reflect RAW and WAR dependencies with OpenMP depend clauses, a RAW depend specification can prevent a WAR dependency and vice versa.

  11. 11.

    Although read-only variables are excluded, this is sufficient because Algorithm 4 only checks live and modified variables.

References

  1. Abadi, M., Keidar-Barner, S., Pidan, D., Veksler, T.: Verifying parallel code after refactoring using equivalence checking. Int. J. Parallel Program. 47(1), 59–73 (2018). https://doi.org/10.1007/s10766-017-0548-4

  2. Atzeni, S., et al.: ARCHER: effectively spotting data races in large OpenMP applications. In: Proceedings IPDPS, pp. 53–62. IEEE (2016). https://doi.org/10.1109/IPDPS.2016.68

  3. Basupalli, V., et al.: ompVerify: polyhedral analysis for the OpenMP programmer. In: Proceedings IWOMP, pp. 37–53. LNCS 6665, Springer (2011). https://doi.org/10.1007/978-3-642-21487-5_4

  4. Bora, U., Das, S., Kukreja, P., Joshi, S., Upadrasta, R., Rajopadhye, S.: LLOV: a fast static data-race checker for openMP programs. TACO 17(4) (2020). https://doi.org/10.1145/3418597

  5. Goncalves, R., Amaris, M., Okada, T.K., Bruel, P., Goldman, A.: OpenMP is not as easy as it appears. In: Proceedings HICSS, pp. 5742–5751. IEEE (2016). https://doi.org/10.1109/HICSS.2016.710

  6. Jakobs, M.: PatEC: pattern-based equivalence checking. In: Laarman, A., Sokolova, A. (eds.) SPIN 2021, LNCS, vol. 12864, pp. 120–139 (2021). https://doi.org/10.1007/978-3-030-84629-9_7

  7. Jakobs, M.C.: PEQcheck: localized and context-aware checking of functional equivalence. In: Proceedings FormaliSE, pp. 130–140. IEEE (2021), https://doi.org/10.1109/FormaliSE52586.2021.00019

  8. Leviathan, R., Pnueli, A.: Validating software pipelining optimizations. In: Proceedings CASES, pp. 280–287. ACM (2002). https://doi.org/10.1145/581630.581676

  9. Li, J., Hei, D., Yan, L.: Correctness analysis based on testing and checking for OpenMP Programs. In: Proceedings ChinaGrid, pp. 210–215. IEEE (2009). https://doi.org/10.1109/ChinaGrid.2009.12

  10. Li, Z., Atre, R., Huda, Z.U., Jannesari, A., Wolf, F.: Unveiling parallelization opportunities in sequential programs. J. Syst. Softw. 282–295 (2016). https://doi.org/10.1016/j.jss.2016.03.045

  11. Liao, C., Lin, P.H., Asplund, J., Schordan, M., Karlin, I.: DataRaceBench: a benchmark suite for systematic evaluation of data race detection tools. Proc. SC. ACM (2017). https://doi.org/10.1145/3126908.3126958

  12. Liao, C., Quinlan, D.J., Willcock, J., Panas, T.: Extending automatic parallelization to optimize high-level abstractions for multicore. In: Proceedings IWOMP, pp. 28–41. LNCS 5568, Springer (2009). https://doi.org/10.1007/978-3-642-02303-3_3

  13. Lin, Y.: Static Nonconcurrency analysis of OpenMP programs. In: Proceedings IWOMP, pp. 36–50. LNCS 4315, Springer (2005). https://doi.org/10.1007/978-3-540-68555-5_4

  14. Ma, H., Diersen, S., Wang, L., Liao, C., Quinlan, D., Yang, Z.: Symbolic analysis of concurrency errors in OpenMP programs. In: Proceedings ICPP. pp. 510–516. IEEE (2013). https://doi.org/10.1109/ICPP.2013.63

  15. Mattson, T.G., Sanders, B.A., Massingill, B.L.: Patterns for parallel programming. Addison-Wesley Professional (2013)

    Google Scholar 

  16. McCool, M., Reinders, J., Robison, A.: Structured Parallel Programming: Patterns for Efficient Computation. Morgan Kaufmann Publishers Inc., Burlington (2012)

    Google Scholar 

  17. OpenMP: OpenMP application programming interface (version 5.1). Technical report OpenMP Architecture Review Board (2020). https://www.openmp.org/specifications/

  18. Quinlan, D., Liao, C.: The ROSE source-to-source compiler infrastructure. In: Cetus users and compiler infrastructure workshop, in conjunction with PACT, vol. 2011, p. 1. Citeseer (2011)

    Google Scholar 

  19. Royuela, S., Ferrer, R., Caballero, D., Martorell, X.: Compiler analysis for OpenMP tasks correctness. In: Proceedings CF, pp. 11–19. ACM (2015). https://doi.org/10.1145/2742854.2742882

  20. Saillard, E., Carribault, P., Barthou, D.: Static Validation of barriers and worksharing constructs in openmp applications. In: Proceedings IWOMP, pp. 73–86. LNCS 8766, Springer (2014). https://doi.org/10.1007/978-3-319-11454-5_6

  21. Salamanca, J., Mattos, L., Araujo, G.: Loop-carried dependence verification in OpenMP. In: Proceedin IWOMP, pp. 87–102. LNCS 8766, Springer (2014). https://doi.org/10.1007/978-3-319-11454-5_7

  22. Siegel, S.F., et al.: CIVL: the concurrency intermediate verification language. In: Proceedings SC, pp. 61:1–61:12. ACM (2015). https://doi.org/10.1145/2807591.2807635

  23. Swain, B., Li, Y., Liu, P., Laguna, I., Georgakoudis, G., Huang, J.: OMPRacer: a scalable and precise static race detector for OpenMP programs. In: Proceedings SC. IEEE (2020). https://doi.org/10.1109/SC41405.2020.00058

  24. Tristan, J., Leroy, X.: A simple, verified validator for software pipelining. In: Proceedings POPL, pp. 83–92. ACM (2010). https://doi.org/10.1145/1706299.1706311

  25. Virouleau, P., Brunet, P., Broquedis, F., Furmento, N., Thibault, S., Aumage, O., Gautier, T.: Evaluation of OpenMP dependent tasks with the KASTORS benchmark suite. In: Proceedings IWOMP, pp. 16–29. LNCS 8766, Springer (2014). https://doi.org/10.1007/978-3-319-11454-5_2

  26. Ye, F., Schordan, M., Liao, C., Lin, P., Karlin, I., Sarkar, V.: Using polyhedral analysis to verify openmp applications are data race free. In: Proceedings CORRECTNESS@SC, pp. 42–50. IEEE (2018). https://doi.org/10.1109/Correctness.2018.00010

  27. Yu, F., Yang, S., Wang, F., Chen, G., Chan, C.: Symbolic consistency checking of openmp parallel programs. In: Proceedings LCTES, pp. 139–148. ACM (2012). https://doi.org/10.1145/2248418.2248438

  28. Zhang, Y., Duesterwald, E., Gao, G.R.: Concurrency analysis for shared memory programs with textually unaligned barriers. In: Proceedings LCPC, pp. 95–109. LNCS 5234, Springer (2007). https://doi.org/10.1007/978-3-540-85261-2_7

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Maik Wiesner or Marie-Christine Jakobs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wiesner, M., Jakobs, MC. (2021). Verifying Pipeline Implementations in OpenMP. In: Laarman, A., Sokolova, A. (eds) Model Checking Software. SPIN 2021. Lecture Notes in Computer Science(), vol 12864. Springer, Cham. https://doi.org/10.1007/978-3-030-84629-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84629-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84628-2

  • Online ISBN: 978-3-030-84629-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics