Skip to main content

HESS-IM: A Uncertainty Reduction Method that Integrates Remote Sensing Data Applied to Forest Fire Behavior Prediction

  • Conference paper
  • First Online:
Cloud Computing, Big Data & Emerging Topics (JCC-BD&ET 2021)

Abstract

Natural disasters alter the stability and living conditions in the environment. Natural disasters are caused by different types of hazards, which can be of natural or man-made origin, the latter in turn can be intentional or unintentional. Forest fires cause great losses and harms every year, some of which are often irreparable. Among the different strategies and technologies available to mitigate the effects of fire, the forest fire behavior prediction may be a promising strategy. This approach allows for identifying areas at greatest risk of being burned, thereby permitting to take decisions in advance to reduce losses and damages. In this work, we present a Hybrid Evolutionary-Statistical System with Island Model (HESS-IM), a new approach of the uncertainty reduction method that integrates remote sensing data applied to forest fire behavior prediction. HESS-IM uses hybrid metaheuristics under a collaborative approach as an optimization technique, satellite images for application to real cases, statistical analysis, and heterogeneous high-performance computing to generate predictions in the shortest time possible.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hyndman, D.W., Hyndman, D.W.: Natural Hazards and Disasters. Brooks/Cole, Cengage Learning (2014)

    Google Scholar 

  2. Banco, M.: Los desastres naturales empujan a 26 millones de personas a la pobreza y provocan pérdidas por USD 520 000 millones al año, según un nuevo análisis del Banco Mundial (2016). http://www.bancomundial.org/es/news/press-release/2016/11/14/natural-disasters-force-26-million-people-into-poverty-and-cost-520bn-in-losses-every-year-new-world-bank-analysis-finds. Accessed 30 Apr 2018

  3. BID: Indicadores de Riesgo de Desastres Naturales y de Gestión de Riesgos. Technical report, BID, Banco Interamericano de Desarrollo (2010)

    Google Scholar 

  4. Méndez-Garabetti, M.: Método de Reducción de incertidumbre basado en algoritmos evolutivos y paralelismo orientado a la predicción y prevención de desastres naturales. Ph.D. thesis, Universidad Nacional de San Luis (2020)

    Google Scholar 

  5. Méndez-Garabetti, M., Bianchini, G., Tardivo, M.L., Caymes Scutari, P.G., Gil Costa, G. V.: Hybrid-parallel uncertainty reduction method applied to forest fire spread prediction. J. Comput. Sci. Technol. 17(1), 12–19 (2017). ISSN-e 1666–6038

    Google Scholar 

  6. Thompson, M.P., Calkin, D.E.: Uncertainty and risk in wildland fire management: a review. J. Environ. Manage. 92, 1895–1909 (2011)

    Article  Google Scholar 

  7. Nelles, O.: Nonlinear System Identification: From Classical Approaches to Neural Networks and Fuzzy Models. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04323-3

    Book  MATH  Google Scholar 

  8. Wallace, G.: A numerical fire simulation-model. Int. J. Wildland Fire 3(2), 111 (1993)

    Article  Google Scholar 

  9. Finney, M.A.: FARSITE: fire area simulator—model development and evaluation. USDA Forest Service Research Paper, no. February, p. 47 (1998)

    Google Scholar 

  10. Andrews, P.L., Bevins, C.D., Seli, R.C., Andrews, A., Bevins, P.L., Seli, C.D.: BehavePlus fire modeling system, version 4.0: User’s Guide Revised (2008)

    Google Scholar 

  11. Heinsch, F.A., Andrews, P.L.: BehavePlus fire modeling system, version 5.0: design and features. Technical report 249 (2010)

    Google Scholar 

  12. Lopes, A., Cruz, M., Viegas, D.: FireStation—an integrated software system for the numerical simulation of fire spread on complex topography. Environ. Modell. Softw. 17, 269–285 (2002)

    Google Scholar 

  13. Ribeiro, L., Viegas, D., Lopes, A., Mangana, P., Moura, P.: Operational application of a decision support tool in fire management in Portugal. For. Ecol. Manage. 234(Supplement 1), 243 (2006)

    Article  Google Scholar 

  14. Iyengar, S.S., Brooks, R.R: Distributed Sensor Networks: Sensor Networking and Applications, 2 edn. Chapman and Hall/CRC, Florida (2013)

    Google Scholar 

  15. Dubey, V., Kumar, P., Chauhan, N.: Forest fire detection system using IoT and artificial neural network. In: Bhattacharyya, S., Hassanien, A.E., Gupta, D., Khanna, A., Pan, I. (eds.) International Conference on Innovative Computing and Communications. LNNS, vol. 55, pp. 323–337. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-2324-9_33

    Chapter  Google Scholar 

  16. Beven, K., Binley, A.: The future of distributed models: model calibration and uncertainty prediction. Hydrol. Process. 6, 279–298 (1992)

    Article  Google Scholar 

  17. Abdalhaq, B.: A Methodology to enhance the prediction of forest fire propagation. Universitat Autonoma de Barcelona, November 2004

    Google Scholar 

  18. Bianchini, G.: Wildland fire prediction based on statistical analysis of multiple solutions. Ph. d thesis, Universidad Autonoma de Barcelona, July 2006

    Google Scholar 

  19. Bianchini, G., Denham, M., Cortés, A., Margalef, T., Luque, E.: Wildland fire growth prediction method based on multiple overlapping solution. J. Comput. Sci. 1, 229–237 (2010)

    Article  Google Scholar 

  20. Bianchini, G., Caymes-Scutari, P., Méndez-Garabetti, M.: Evolutionary-statistical system: a parallel method for improving forest fire spread prediction. J. Comput. Sci. 6, 58–66 (2015)

    Article  Google Scholar 

  21. Méndez-Garabetti, M., Bianchini, G., Caymes-Scutari, P., Tardivo, M.L.: Increase in the quality of the prediction of a computational wildfire behavior method through the improvement of the internal metaheuristic. Fire Saf. J. 82, 49–62 (2016)

    Article  Google Scholar 

  22. Tardivo, M.L., Caymes-Scutari, P., Bianchini, G., Méndez-Garabetti, M., Cencerrado, A., Cortés, A.: A comparative study of evolutionary statistical methods for uncertainty reduction in forest fire propagation prediction. Proc. Comput. Sci. 108, 2018–2027 (2017)

    Article  Google Scholar 

  23. Bouttier, F., Courtier, P.: Data assimilation concepts and methods (2002)

    Google Scholar 

  24. Darema, F.: Introduction to the ICCS 2007 workshop on dynamic data driven applications systems. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds.) ICCS 2007, Part I. LNCS, vol. 4487, pp. 955–962. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72584-8_125

  25. Arahal, M.R., Berenguel Soria, M., Rodríguez Días, F.: Técnicas de predicción con aplicaciones en ingeniería. Secretariado de Publicaciones, Universidad de Sevilla, Sevilla (2006)

    Google Scholar 

  26. Montgomery, D., Runger, G.: Applied Statistics and Probability for Engineers, 6th edn. Limusa Wiley & Sons, New Jersey (2014)

    MATH  Google Scholar 

  27. Buyya, R.: High Performance Cluster Computing: Architectures and Systems. Prentice Hall, PTR, NJ (1999)

    Google Scholar 

  28. Talbi, E.-G.: Metaheuristics: From Design to Implementation. Wiley, Hoboken (2009)

    Book  Google Scholar 

  29. Chuvieco, E.: Wildland Fire Danger Estimation and Mapping. Series in Remote Sensing, vol. 4. World Scientific (2003)

    Google Scholar 

  30. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing. Natural Computing Series, Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-662-05094-1

    Book  MATH  Google Scholar 

  31. Storn, R., Price, K.: Differential evolution - a simple and efficient adaptive scheme for global optimization over continuous spaces. Technical report, TR- 95–012, ICSI, Berkeley, CA (1995)

    Google Scholar 

  32. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, pp. 1942–1948 (1995)

    Google Scholar 

  33. Rothermel, R.: A mathematical model for predicting fire spread in wildland fuels, vol. II. Research Paper INT-115, US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station (Ogden, UT) (1972)

    Google Scholar 

  34. Bevins, C.D.: fireLib user manual and technical reference. Technical report, Intermountain Research Station, Forest Service, U.S. Department of Agriculture (1996)

    Google Scholar 

  35. Fischer, M.A., Di Bella, C.M., Jobbágy, E.G.: Fire patterns in central semiarid Argentina. J. Arid Environ. 78, 161–168 (2012)

    Article  Google Scholar 

  36. Hmimina, G., et al.: Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: an investigation using ground-based NDVI measurements. Remote Sens. Environ. (2013)

    Google Scholar 

  37. Xu, W., Wooster, M.J., Roberts, G., Freeborn, P.: New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America. Remote Sens. Environ. (2010)

    Google Scholar 

  38. Van De Griend, A.A., Owe, M.: On the relationship between thermal emissivity and the normalized difference vegetation index for natural surfaces. Int. J. Remote Sens. (1993)

    Google Scholar 

  39. Schroeder, W., et al.: Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sens. Environ. 112, 2711–2726 (2008)

    Article  Google Scholar 

  40. Waigl, C.F., Stuefer, M., Prakash, A., Ichoku, C.: Detecting high and low-intensity fires in Alaska using VIIRS I-band data: an improved operational approach for high latitudes. Remote Sens. Environ. 199, 389–400 (2017)

    Google Scholar 

  41. Hawbaker, T.J., Radeloff, V.C., Syphard, A.D., Zhu, Z., Stewart, S.I.: Detection rates of the MODIS active fire product in the United States. Remote Sens. Environ. 112, 2656–2664 (2008)

    Article  Google Scholar 

  42. Zhang, J.H., Yao, F.M., Liu, C., Yang, L.M., Boken, V.K.: Detection, emission estimation and risk prediction of forest fires in China using satellite sensors and simulation models in the past three decades-an overview. Int. J. Environ. Res. Public Health 8(8), 3156–3178 (2011)

    Article  Google Scholar 

  43. Moderate Resolution Imaging Spectroradiometer (MODIS)—Earthdata

    Google Scholar 

  44. Warmerdam, F., Rouault, E.: GDAL—GDAL documentation (2019)

    Google Scholar 

  45. Amer, A., et al.: MPICH user’s guide. Technical report (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Méndez-Garabetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Méndez-Garabetti, M., Bianchini, G., Caymes-Scutari, P. (2021). HESS-IM: A Uncertainty Reduction Method that Integrates Remote Sensing Data Applied to Forest Fire Behavior Prediction. In: Naiouf, M., Rucci, E., Chichizola, F., De Giusti, L. (eds) Cloud Computing, Big Data & Emerging Topics. JCC-BD&ET 2021. Communications in Computer and Information Science, vol 1444. Springer, Cham. https://doi.org/10.1007/978-3-030-84825-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-84825-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-84824-8

  • Online ISBN: 978-3-030-84825-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics