Skip to main content

Outage Probability of CR-NOMA Schemes with Multiple Antennas Selection and Power Transfer Approach

  • Conference paper
  • First Online:
Advances in Networked-Based Information Systems (NBiS 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 313))

Included in the following conference series:

  • 421 Accesses

Abstract

In this paper, the outage performance of CR-NOMA schemes in decode-and-forward (DF) relay systems Device-to-Device (D2D) with antenna selection is investigated. We propose the power beacon, which can feed energy to the relay device node to further support the transmission from the source to the destination. To this end, closed-form expressions for the outage probabilities at user are derived. An asymptotic analysis at a high signal-to-noise ratio (SNR) is carried out to provide additional insights into the system performance. Furthermore, computer simulation results are presented to validate the accuracy of the attained analytical results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haykin, S.: Cognitive radio: brain-empowered wireless communications. IEEE J. Sel. Areas Commun. 23(2), 201–220 (2005)

    Article  Google Scholar 

  2. Goldsmith, A., Jafar, S., Maric, I., Srinivasa, S.: Breaking spectrum gridlock with cognitive radios: an information theoretic perspective. Proc. IEEE 97(5), 894–914 (2009)

    Article  Google Scholar 

  3. Akyildiz, I.F., Lee, W.-Y., Vuran, M.C., Mohanty, S.: Next generation/dynamic spectrum access/cognitive radio wireless networks: a survey. Comput. Netw. 50(13), 2127–2159 (2006)

    Article  Google Scholar 

  4. Namdar, M., Basgumus, A.: Outage performance analysis of underlay cognitive radio networks with decode‐and‐forward relaying. Cogn. Radio (2017)

    Google Scholar 

  5. Ghasemi, A., Sousa, E.: Fundamental limits of spectrum-sharing in fading environments. IEEE Trans. Wireless Commun. 6(2), 649–658 (2007)

    Article  Google Scholar 

  6. Wang, L., Kim, K.J., Duong, T.Q., Elkashlan, M., Poor, H.V.: Security enhancement of cooperative single carrier systems. IEEE Trans. Inf. Forensics Secur. 10(1), 90–103 (2015)

    Google Scholar 

  7. Rodriguez, L.J., Tran, N.H., Duong, T.Q., Le-Ngoc, T., Elkashlan, M., Shetty, S.: Physical layer security in wireless cooperative relay networks: state of the art and beyond. IEEE Commun. Mag. 53(12), 32–39 (2015)

    Google Scholar 

  8. Sun, L., Zhang, T., Lu, L., Niu, H.: On the combination of cooperative diversity and multiuser diversity in multi-source multi-relay wireless networks. IEEE Signal Process. Lett. 17(6), 535–538 (2010)

    Article  Google Scholar 

  9. Ju, M., Song, H.-K., Kim, I.-M.: Joint relay-and-antenna selection in multi-antenna relay networks. IEEE Trans. Commun. 58(12), 3417–3422 (2010)

    Article  Google Scholar 

  10. Do, D.-T., Le, A.-T.: NOMA based cognitive relaying: transceiver hardware impairments, relay selection policies and outage performance comparison. Comput. Commun. 146, 144–154 (2019)

    Article  Google Scholar 

  11. Martinek, R., Danys, L., Jaros, R.: Adaptive software defined equalization techniques for indoor visible light communication. Sensors 20(6), 1618 (2020)

    Article  Google Scholar 

  12. Martinek, R., Danys, L., Jaros, R.: Visible light communication system based on software defined radio: Performance study of intelligent transportation and indoor applications. Electronics 8(4), 433 (2019)

    Article  Google Scholar 

  13. Martinek, R., et al.: Design of a measuring system for electricity quality monitoring within the smart street lighting test polygon: pilot study on adaptive current control strategy for three-phase shunt active power filters. Sensors 20(6), 1718 (2020)

    Article  Google Scholar 

  14. Nasir, A.A., Zhou, X., Durrani, S., Kennedy, R.A.: Relaying protocols for wireless energy harvesting and information processing. IEEE Trans. Wireless Commun. 12(7), 3622–3636 (2013)

    Article  Google Scholar 

  15. Le, T., Shin, O.: Wireless energy harvesting in cognitive radio with opportunistic relays selection. In: Proceedings of IEEE PIMRC, Hong Kong, pp. 949–953 (2015)

    Google Scholar 

  16. Banerjee, A., Paul, A., Maity, S.P.: Joint power allocation and route selection for outage minimization in multihop cognitive radio Networks with energy harvesting. IEEE Trans. Cog. Commun. Netw. 4(1), 82–92 (2018)

    Article  Google Scholar 

  17. Wakaiki, M., Suto, K., Koiwa, K., Liu, K., Zanma, T.:A control theoretic approach for cell zooming of energy harvesting small cell networks. IEEE Trans. Green Commun. Netw. 3(2), 329–342 (2019). https://doi.org/10.1109/TGCN.2018.2889897

  18. Wang, H., Wang, J., Ding, G., Wang, L., Tsiftsis, T.A., Sharma, P.K.: Resource allocation for energy harvesting-powered D2D communication underlaying UAV-assisted networks. IEEE Trans. on Green Commun. Netw. 2(1), 14–24 (2018). https://doi.org/10.1109/TGCN.2017.2767203

  19. Nguyen, N., Duong, T.Q., Ngo, H.Q., Hadzi-Velkov, Z., Shu, L.: Secure 5G wireless communications: a joint relay selection and wireless power transfer approach. IEEE Access 4, 3349–3359 (2016)

    Article  Google Scholar 

  20. Fan, L., Yang, N., Duong, T.Q., Elkashlan, M., Karagiannidis, G.K.: Exploiting direct links for physical layer security in multiuser multirelay networks. IEEE Trans. Wireless Commun. 15(6), 3856–3867 (2016)

    Article  Google Scholar 

  21. Ye, J., Liu, Z., Zhao, H., Pan, G., Ni, Q., Alouini, M.: Relay selections for cooperative underlay CR systems with energy harvesting. IEEE Trans. Cogn. Commun. Netw. 5(2), 358–369 (2019)

    Article  Google Scholar 

  22. Im, G., Lee, J.H.: Outage probability for cooperative NOMA systems with imperfect sic in cognitive radio networks. IEEE Commun. Lett. 23(4), 692–695 (2019)

    Article  Google Scholar 

  23. Yue, X., Liu, Y., Kang, S., Nallanathan, A., Ding, Z.: Exploiting full/half-duplex user relaying in NOMA systems. IEEE Trans. Commun. 66(2), 560–575 (2018)

    Article  Google Scholar 

  24. Lee, S., Benevides da Costa, D., Duong, T.Q.: Outage probability of non-orthogonal multiple access schemes with partial relay selection. In: 2016 IEEE 27th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Valencia (2016)

    Google Scholar 

  25. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series and Products, 6th edn. New York, Academic Press (2000)

    Google Scholar 

Download references

Acknowledgments

The research leading to this results was supported by Czech Ministry of Education, Youth and Sports under project reg. no. SP2021/25 and also partially under the e-INFRA CZ project ID:90140.

The authors would like to thank the anonymous reviews for the helpful comments and suggestions. This work is a part of the basic science research program CS2020-21 funded by the Saigon University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hong-Nhu Nguyen , Ngoc-Long Nguyen , Nhat-Tien Nguyen , Ngoc-Lan Nguyen or Miroslav Voznak .

Editor information

Editors and Affiliations

Appendices

Appendix A: Proof of Theorem 1

From (13), \(A\) can be formulated by

$$ \begin{gathered} A = \Pr \left( {\left| {h_{1n*} } \right|^{2} > \frac{\xi }{{P_{BS}^{\max } }},P_{BS}^{\max } < \frac{H}{{\left| {h_{p1*} } \right|^{2} }}} \right) + \Pr \left( {\left| {h_{1n*} } \right|^{2} > \frac{\xi }{{\frac{H}{{\left| {h_{p1*} } \right|^{2} }}}},P_{BS}^{\max } > \frac{H}{{\left| {h_{p1*} } \right|^{2} }}} \right) \hfill \\ = \underbrace {{\Pr \left( {\left| {h_{1n*} } \right|^{2} > \frac{\xi }{{P_{BS}^{\max } }},P_{BS}^{\max } < \frac{H}{{\left| {h_{p1*} } \right|^{2} }}} \right)}}_{{A_{1} }} + \underbrace {{\Pr \left( {\left| {h_{1n*} } \right|^{2} > \frac{\xi }{{\frac{H}{{\left| {h_{p1*} } \right|^{2} }}}},P_{BS}^{\max } > \frac{H}{{\left| {h_{p1*} } \right|^{2} }}} \right)}}_{{A_{2} }}. \hfill \\ \end{gathered} $$
(A.1)

Next, \(A_{1}\) it can be first calculated as

$$ \begin{gathered} A_{1} = \Pr \left( {\left| {h_{1n*} } \right|^{2} > \frac{\xi }{{P_{BS}^{\max } }},\left| {h_{p1} } \right|^{2} < \frac{H}{{P_{BS}^{\max } }}} \right) = \Pr \left( {\left| {h_{1n*} } \right|^{2} > \frac{\xi }{{P_{BS}^{\max } }}} \right)\left[ {1 - \Pr \left( {\left| {h_{p1} } \right|^{2} \ge \frac{H}{{P_{BS}^{\max } }}} \right)} \right] \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} = \sum\limits_{n = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n - 1} } \exp \left( { - \frac{n\xi }{{P_{BS}^{\max } \lambda_{1n} }}} \right) \times \left[ {1 - \sum\limits_{n = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n - 1} } \exp \left( { - \frac{nH}{{P_{BS}^{\max } \lambda_{p1} }}} \right)} \right]. \hfill \\ \end{gathered} $$
(A.2)

In a similar way, \(A_{2}\) it can be first calculated as

$$ \begin{gathered} A_{2} = \Pr \left( {\left| {h_{1n*} } \right|^{2} > \frac{{\left| {h_{p1*} } \right|^{2} \xi }}{H},\left| {h_{p1*} } \right|^{2} > \frac{H}{{P_{BS}^{\max } }}} \right) = \int_{{\frac{H}{{P_{BS}^{\max } }}}}^{\infty } {\left( {1 - F_{{\left| {h_{1n*} } \right|^{2} }} \left( {\frac{\xi x}{H}} \right)} \right)f_{{\left| {h_{p1*} } \right|^{2} }} \left( x \right)dx} \hfill \\ = \sum\limits_{n = 1}^{N} {\sum\limits_{m = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( \begin{gathered} N \hfill \\ m \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n + m - 2} } \frac{m}{{\lambda_{p1} }}} \int_{{\frac{H}{{P_{BS}^{\max } }}}}^{\infty } {\exp \left( { - \left( {\frac{n\xi }{{H\lambda_{1n} }} + \frac{m}{{\lambda_{p1} }}} \right)x} \right)dx} \hfill \\ = \sum\limits_{n = 1}^{N} {\sum\limits_{m = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( \begin{gathered} N \hfill \\ m \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n + m - 2} } } \frac{{mH\lambda_{1n} }}{{n\xi \lambda_{p1} + mH\lambda_{1n} }} \times \exp \left( { - \left( {\frac{n\xi }{{H\lambda_{1n} }} + \frac{m}{{\lambda_{p1} }}} \right)\frac{H}{{P_{BS}^{\max } }}} \right). \hfill \\ \end{gathered} $$
(A.3)

From (A.2) and (A.3), \(A\) can write such as

$$ \begin{gathered} A = \sum\limits_{n = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n - 1} } \exp \left( { - \frac{n\xi }{{P_{BS}^{\max } \lambda_{1n} }}} \right) \times \left[ {1 - \sum\limits_{n = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n - 1} } \exp \left( { - \frac{nH}{{P_{BS}^{\max } \lambda_{p1} }}} \right)} \right] \hfill \\ + \sum\limits_{n = 1}^{N} {\sum\limits_{m = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( \begin{gathered} N \hfill \\ m \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n + m - 2} } } \frac{{mH\lambda_{1n} }}{{n\xi \lambda_{p1} + mH\lambda_{1n} }} \times \exp \left( { - \left( {\frac{n\xi }{{H\lambda_{1n} }} + \frac{m}{{\lambda_{p1} }}} \right)\frac{H}{{P_{BS}^{\max } }}} \right). \hfill \\ \end{gathered} $$
(A.4)

We plug (A.4) into (13), it can be achieved \(OP_{1}^{{}}\) as the proposition.

This is the end of the proof.

Appendix B: Proof of Theorem 2

From (15), \(B_{1}\) can be formulated by

$$ \begin{aligned} B_{1} &=\, \Pr \left( {\gamma_{{BS - D_{2} *}}^{{\left( {x_{2} } \right)}} \ge \varepsilon_{2} } \right) = \Pr \left( {\left| {h_{2n*} } \right|^{2} \ge \frac{{\varepsilon_{2} \omega_{0} }}{{P_{BS}^{\max } \left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)}},P_{BS}^{\max } < \frac{H}{{\left| {h_{p1*} } \right|^{2} }}} \right) \\& - \, \Pr \left( {\left| {h_{2n*} } \right|^{2} \ge \frac{{\varepsilon_{2} \omega_{0} }}{{\frac{H}{{\left| {h_{p1*} } \right|^{2} }}\left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)}},P_{BS}^{\max } > \frac{H}{{\left| {h_{p1*} } \right|^{2} }}} \right) \hfill \\& = \, \underbrace {{\Pr \left( {\left| {h_{2n*} } \right|^{2} \ge \frac{{\varepsilon_{2} \omega_{0} }}{{P_{BS}^{\max } \left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)}},P_{BS}^{\max } < \frac{H}{{\left| {h_{p1*} } \right|^{2} }}} \right)}}_{{B_{1a} }}\\& - \, \underbrace {{\Pr \left( {\left| {h_{2n*} } \right|^{2} \ge \frac{{\varepsilon_{2} \omega_{0} \left| {h_{p1*} } \right|^{2} }}{{H\left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)}},P_{BS}^{\max } > \frac{H}{{\left| {h_{p1*} } \right|^{2} }}} \right)}}_{{B_{1b} }}. \end{aligned} $$
(B.1)

Next, \(B_{1a}\) it can be first calculated as

$$ \begin{gathered} B_{1a} = \Pr \left( {\left| {h_{2n*} } \right|^{2} \ge \frac{{\varepsilon_{2} \omega_{0} }}{{P_{BS}^{\max } \left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)}}} \right) \times \left[ {1 - \Pr \left( {\left| {h_{p1*} } \right|^{2} \ge \frac{H}{{P_{BS}^{\max } }}} \right)} \right] \hfill \\ = \sum\limits_{n = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n - 1} } \exp \left( { - \frac{{n\varepsilon_{2} \omega_{0} }}{{P_{BS}^{\max } \left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)\lambda_{2n} }}} \right) \times \left[ {1 - \sum\limits_{n = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n - 1} } \exp \left( { - \frac{nH}{{P_{BS}^{\max } \lambda_{p1} }}} \right)} \right]. \hfill \\ \end{gathered} $$
(B.2)

From (B.1), \(B_{1b}\) it can be first calculated as

$$ \begin{gathered} B_{1b} = \Pr \left( {\left| {h_{2n*} } \right|^{2} \ge \frac{{\varepsilon_{2} \omega_{0} \left| {h_{p1*} } \right|^{2} }}{{H\left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)}},\left| {h_{p1*} } \right|^{2} > \frac{H}{{P_{BS}^{\max } }}} \right) = \int_{{\frac{H}{{P_{BS}^{\max } }}}}^{\infty } {\left( {1 - F_{{\left| {h_{2n*} } \right|^{2} }} \left( {\frac{{\varepsilon_{2} \omega_{0} x}}{{H\left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)}}} \right)} \right)f_{{\left| {h_{p1*} } \right|^{2} }} \left( x \right)dx} \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} = \sum\limits_{n = 1}^{N} {\sum\limits_{m = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( \begin{gathered} N \hfill \\ m \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n + m - 2} } \frac{m}{{\lambda_{p1} }}} \times \int_{{\frac{H}{{P_{BS}^{\max } }}}}^{\infty } {\exp \left( { - \left( {\frac{{n\varepsilon_{2} \omega_{0} }}{{H\left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)\lambda_{2n} }} + \frac{m}{{\lambda_{p1} }}} \right)x} \right)dx} \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} = \sum\limits_{n = 1}^{N} {\sum\limits_{m = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( \begin{gathered} N \hfill \\ m \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n + m - 2} } } \frac{{mH\left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)\lambda_{2n} }}{{n\varepsilon_{2} \omega_{0} \lambda_{p1} + mH\left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)\lambda_{2n} }} \times \exp \left( { - \left( {\frac{{n\varepsilon_{2} \omega_{0} }}{{H\left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)\lambda_{2n} }} + \frac{m}{{\lambda_{p1} }}} \right)\frac{H}{{P_{BS}^{\max } }}} \right). \hfill \\ \end{gathered} $$
(B.3)

From (B.2) and (B.3), \(B_{1}\) can written such as

$$ \begin{gathered} B_{1} = \sum\limits_{n = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n - 1} } \exp \left( { - \frac{{n\varepsilon_{2} \omega_{0} }}{{P_{BS}^{\max } \left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)\lambda_{2n} }}} \right) \times \left[ {1 - \sum\limits_{n = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n - 1} } \exp \left( { - \frac{nH}{{P_{BS}^{\max } \lambda_{p1} }}} \right)} \right] \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} + \sum\limits_{n = 1}^{N} {\sum\limits_{m = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( \begin{gathered} N \hfill \\ m \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n + m - 2} } } \frac{{mH\left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)\lambda_{2n} }}{{n\varepsilon_{2} \omega_{0} \lambda_{p1} + mH\left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)\lambda_{2n} }} \times \exp \left( { - \left( {\frac{{n\varepsilon_{2} \omega_{0} }}{{H\left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)\lambda_{2n} }} + \frac{m}{{\lambda_{p1} }}} \right)\frac{H}{{P_{BS}^{\max } }}} \right). \hfill \\ \end{gathered} $$
(B.4)

From (15), \(B_{2}\) can be formulated by

$$ B_{2} = \Pr \left( {\min \left( {\gamma_{{D_{1} *}}^{{\left( {x_{2} } \right)}} ,\gamma_{{D_{1} - D_{2} *}}^{{\left( {x_{2} } \right)}} } \right) < \varepsilon_{2} } \right) = 1 - \underbrace {{\Pr \left( {\gamma_{{D_{1} *}}^{{\left( {x_{2} } \right)}} \ge \varepsilon_{2} } \right)}}_{{B_{2a} }}\underbrace {{\Pr \left( {\gamma_{{D_{1} - D_{2} *}}^{{\left( {x_{2} } \right)}} \ge \varepsilon_{2} } \right)}}_{{B_{2b} }}. $$
(B.5)

\(B_{2a}\) can be formulated such as \(B_{1}\), we have

$$ \begin{gathered} B_{2a} = \sum\limits_{n = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n - 1} } \exp \left( { - \frac{{n\varepsilon_{2} \omega_{0} }}{{P_{BS}^{\max } \left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)\lambda_{1n} }}} \right) \times \left[ {1 - \sum\limits_{n = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n - 1} } \exp \left( { - \frac{nH}{{P_{BS}^{\max } \lambda_{p1} }}} \right)} \right] \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} + \sum\limits_{n = 1}^{N} {\sum\limits_{m = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( \begin{gathered} N \hfill \\ m \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n + m - 2} } } \frac{{mH\left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)\lambda_{1n} }}{{n\varepsilon_{2} \omega_{0} \lambda_{p1} + mH\left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)\lambda_{1n} }} \times \exp \left( { - \left( {\frac{{n\varepsilon_{2} \omega_{0} }}{{H\left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)\lambda_{1n} }} + \frac{m}{{\lambda_{p1} }}} \right)\frac{H}{{P_{BS}^{\max } }}} \right). \hfill \\ \end{gathered} $$
(B.6)

From (B.5), \(B_{2b}\) it can be first calculated as

$$ \begin{gathered} B_{2b} = \Pr \left( {\gamma_{{D_{1} - D_{2} }}^{{\left( {x_{2} } \right)}} \ge \varepsilon_{2} } \right) = \Pr \left( {\min \left\{ {P_{{D_{1} }}^{EH} ,P_{{D_{1} }}^{\max } ,H/\left| {h_{p2} } \right|^{2} } \right\} \ge \omega_{0} \varepsilon_{2} } \right) \hfill \\ = \Pr \left( {P_{{D_{1} }}^{EH} \ge \frac{{\omega_{0} \varepsilon_{2} }}{{\left| {h_{3} } \right|^{2} }}} \right)\Pr \left( {P_{{D_{1} }}^{\max } \ge \frac{{\omega_{0} \varepsilon_{2} }}{{\left| {h_{3} } \right|^{2} }}} \right)\Pr \left( {\frac{H}{{\left| {h_{p2} } \right|^{2} }} \ge \frac{{\omega_{0} \varepsilon_{2} }}{{\left| {h_{3} } \right|^{2} }}} \right) \hfill \\ = \exp \left( { - \frac{{\omega_{0} \varepsilon_{2} }}{{P_{{D_{1} }}^{\max } \lambda_{3} }}} \right)\underbrace {{\Pr \left( {\left| {h_{3} } \right|^{2} \ge \frac{{\omega_{0} \varepsilon_{2} \left( {1 - \chi } \right)}}{{2\theta P_{B} \chi \left| {h_{b} } \right|^{2} }}} \right)}}_{{B_{2b}^{\left( 1 \right)} }} \times \underbrace {{\Pr \left( {\left| {h_{3} } \right|^{2} \ge \frac{{\omega_{0} \varepsilon_{2} \left| {h_{p2} } \right|^{2} }}{H}} \right)}}_{{B_{2b}^{\left( 2 \right)} }}. \hfill \\ \end{gathered} $$
(B.7)

From (B.7), \(B_{2b}^{\left( 1 \right)}\) it can be first calculated as

$$ \begin{gathered} B_{2b}^{\left( 1 \right)} = \Pr \left( {\left| {h_{3} } \right|^{2} \ge \frac{{\omega_{0} \varepsilon_{2} \left( {1 - \chi } \right)}}{{2\theta P_{B} \chi \left| {h_{b} } \right|^{2} }}} \right) = \int_{0}^{\infty } {\exp \left( { - \frac{{\omega_{0} \varepsilon_{2} \left( {1 - \chi } \right)}}{{2\theta P_{B} \chi \lambda_{3} x}}} \right)\frac{1}{{\lambda_{b} }}\exp \left( { - \frac{x}{{\lambda_{b} }}} \right)dx} \hfill \\ = \sqrt {\frac{{2\omega_{0} \varepsilon_{2} \left( {1 - \chi } \right)}}{{\theta P_{B} \chi \lambda_{3} \lambda_{b} }}} K_{1} \left( {\sqrt {\frac{{2\omega_{0} \varepsilon_{2} \left( {1 - \chi } \right)}}{{\theta P_{B} \chi \lambda_{3} \lambda_{b} }}} } \right). \hfill \\ \end{gathered} $$
(B.8)

It is worth noting that the last equation follows from the fact that.

\(\int_{0}^{\infty } {\exp \left( { - \frac{\delta }{4x} - \varphi x} \right)dx} = \sqrt {\frac{\delta }{\varphi }} K_{1} \left( {\sqrt {\delta \varphi } } \right)\) in [25, Eq. (3.324)].

From (B.7), \(B_{2b}^{\left( 2 \right)}\) it can be first calculated as

$$ B_{2b}^{\left( 2 \right)} = \Pr \left( {\left| {h_{3} } \right|^{2} \ge \frac{{\omega_{0} \varepsilon_{2} \left| {h_{p2} } \right|^{2} }}{H}} \right) = \frac{1}{{\lambda_{p2} }}\int_{0}^{\infty } {\exp \left( { - \left( {\frac{{\omega_{0} \varepsilon_{2} }}{{H\lambda_{3} }} + \frac{1}{{\lambda_{p2} }}} \right)x} \right)dx} = \frac{{H\lambda_{3} }}{{\omega_{0} \varepsilon_{2} \lambda_{p2} + H\lambda_{3} }}. $$
(B.9)

From (B.6), (B.7), (B.8) and (B.9), \(B_{2}\) can written such as

$$ \begin{gathered} B_{2} = 1 - \left\{ {\sum\limits_{n = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n - 1} } \exp \left( { - \frac{{n\varepsilon_{2} \omega_{0} }}{{P_{BS}^{\max } \left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)\lambda_{1n} }}} \right)\left[ {1 - \sum\limits_{n = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n - 1} } \exp \left( { - \frac{nH}{{P_{BS}^{\max } \lambda_{p1} }}} \right)} \right]} \right. \hfill \\ \left. \begin{gathered} \begin{array}{*{20}c} {} & {} \\ \end{array} + \sum\limits_{n = 1}^{N} {\sum\limits_{m = 1}^{N} {\left( \begin{gathered} N \hfill \\ n \hfill \\ \end{gathered} \right)\left( \begin{gathered} N \hfill \\ m \hfill \\ \end{gathered} \right)\left( { - 1} \right)^{n + m - 2} } } \frac{{mH\left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)\lambda_{1n} }}{{n\varepsilon_{2} \omega_{0} \lambda_{p1} + mH\left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)\lambda_{1n} }} \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} \times \exp \left( { - \left( {\frac{{n\varepsilon_{2} \omega_{0} }}{{H\left( {\beta_{2} - \varepsilon_{2} \beta_{1} } \right)\lambda_{1n} }} + \frac{m}{{\lambda_{p1} }}} \right)\frac{H}{{P_{BS}^{\max } }}} \right) \hfill \\ \end{gathered} \right\} \hfill \\ \begin{array}{*{20}c} {} & {} \\ \end{array} \times \frac{{H\lambda_{3} }}{{\omega_{0} \varepsilon_{2} \lambda_{p2} + H\lambda_{3} }}\exp \left( { - \frac{{\omega_{0} \varepsilon_{2} }}{{P_{{D_{1} }}^{\max } \lambda_{3} }}} \right) \times \sqrt {\frac{{2\omega_{0} \varepsilon_{2} \left( {1 - \chi } \right)}}{{\theta P_{B} \chi \lambda_{3} \lambda_{b} }}} K_{1} \left( {\sqrt {\frac{{2\omega_{0} \varepsilon_{2} \left( {1 - \chi } \right)}}{{\theta P_{B} \chi \lambda_{3} \lambda_{b} }}} } \right). \hfill \\ \end{gathered} $$
(B.10)

We plug (B.4), (B.10) into (15), it can be achieved \(OP_{2}\) as the proposition.

This is the end of the proof.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nguyen, HN., Nguyen, NL., Nguyen, NT., Nguyen, NL., Voznak, M. (2022). Outage Probability of CR-NOMA Schemes with Multiple Antennas Selection and Power Transfer Approach. In: Barolli, L., Chen, HC., Enokido, T. (eds) Advances in Networked-Based Information Systems. NBiS 2021. Lecture Notes in Networks and Systems, vol 313. Springer, Cham. https://doi.org/10.1007/978-3-030-84913-9_12

Download citation

Publish with us

Policies and ethics