Skip to main content

Analysis of Electroencephalographic Signals from a Brain-Computer Interface for Emotions Detection

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12861))

Included in the following conference series:

Abstract

Despite living in a digital society, the relation between humans and automatic systems is still far from being similar to the interaction among humans. In order to solve the lack of emotional intelligence of those systems, many works have designed algorithms for an automatic recognition of emotions through the assessment of physiological signals, with special interest in electroencephalography (EEG). However, the complexity of professional EEG recording devices limits the possibility to develop and test these algorithms in real life scenarios, out of laboratory conditions. On the contrary, the use of wearable brain-computer interfaces could solve this limitation. For this reason, the present work analyzes EEG signals recorded with a BCI device for the off-line classification of emotional states. Concretely, the spectral power in the different frequency bands of the EEG spectrum has been computed and assessed to discern between high and low levels of valence and arousal. Results reported an interesting classification performance of the BCI device in all frequency bands, being beta waves those which reported the best outcomes, 68.21% of accuracy for valence and 72.54% for arousal. In addition, the application of a sequential forward selection approach before the classification step revealed the relevance of frontal areas for valence detection and posterior regions for arousal identification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alarcao, S.M., Fonseca, M.J.: Emotions recognition using EEG signals: a survey. IEEE Trans. Affect. Comput. 10(3), 374–393 (2017)

    Article  Google Scholar 

  2. Alia-Klein, N., et al.: Trait anger modulates neural activity in the fronto-parietal attention network. PLoS ONE 13(4), e0194444 (2018)

    Google Scholar 

  3. Coan, J.A., Allen, J.J.B.: Handbook of Emotion Elicitation and Assessment. Oxford University Press, Oxford (2007)

    Google Scholar 

  4. Cohen, M.X.: Analyzing Neural Time Series Data: Theory and Practice. MIT Press, Cambridge (2014)

    Book  Google Scholar 

  5. Davidson, R.J.: Affect, cognition, and hemispheric specialization. In: Emotion, Cognition, and Behavior, pp. 320–365. Cambridge University Press, New York (1988)

    Google Scholar 

  6. Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)

    Article  Google Scholar 

  7. Dolcos, F., Cabeza, R.: Event-related potentials of emotional memory: encoding pleasant, unpleasant, and neutral pictures. Cogn. Affect. Behav. Neurosci. 2(3), 252–263 (2002)

    Article  Google Scholar 

  8. Egger, M., Ley, M., Hanke, S.: Emotion recognition from physiological signal analysis: a review. Electron. Notes Theor. Comput. Sci. 343, 35–55 (2019)

    Article  Google Scholar 

  9. Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3–4), 169–200 (1992)

    Article  Google Scholar 

  10. García-Martínez, B., Martínez-Rodrigo, A., Zangróniz, R., Pastor, J.M., Alcaraz, R.: Symbolic analysis of brain dynamics detects negative stress. Entropy 19(5), 196 (2017)

    Article  Google Scholar 

  11. Han, J., Zhang, Z., Schuller, B.: Adversarial training in affective computing and sentiment analysis: recent advances and perspectives. IEEE Comput. Intell. Mag. 14(2), 68–81 (2019)

    Article  Google Scholar 

  12. Hayashi, T., Okamoto, E., Nishimura, H., Mizuno-Matsumoto, Y., Ishii, R., Ukai, S.: Beta activities in EEG associated with emotional stress. Int. J. Intell. Comput. Med. Sci. Image Process. 3(1), 57–68 (2009)

    Google Scholar 

  13. Heller, W., Nitschke, J.B.: The puzzle of regional brain activity in depression and anxiety: the importance of subtypes and comorbidity. Cogn. Emot. 12(3), 421–447 (1998)

    Article  Google Scholar 

  14. Huang, H., et al.: An EEG-based brain computer interface for emotion recognition and its application in patients with disorder of consciousness. IEEE Trans. Affect. Comput. (2019)

    Google Scholar 

  15. Ismail, W.W., Hanif, M., Mohamed, S., Hamzah, N., Rizman, Z.I.: Human emotion detection via brain waves study by using electroencephalogram (EEG). Int. J. Adv. Sci. Eng. Inf. Technol. 6(6), 1005–1011 (2016)

    Article  Google Scholar 

  16. Jebelli, H., Hwang, S., Lee, S.: EEG signal-processing framework to obtain high-quality brain waves from an off-the-shelf wearable EEG device. J. Comput. Civ. Eng. 32(1), 04017070 (2018)

    Article  Google Scholar 

  17. Jin, M.J., Kim, J.S., Kim, S., Hyun, M.H., Lee, S.H.: An integrated model of emotional problems, beta power of electroencephalography, and low frequency of heart rate variability after childhood trauma in a non-clinical sample: a path analysis study. Front. Psych. 8, 314 (2018)

    Article  Google Scholar 

  18. Jung, Y., Hu, J.: A K-fold averaging cross-validation procedure. J. Nonparametric Stat. 27(2), 167–179 (2015)

    Article  Google Scholar 

  19. Katsigiannis, S., Ramzan, N.: DREAMER: a database for emotion recognition through EEG and ECG signals from wireless low-cost off-the-shelf devices. IEEE J. Biomed. Health Inform. 22(1), 98–107 (2018)

    Article  Google Scholar 

  20. Klem, G.H., Lüders, H.O., Jasper, H.H., Elger, C.: The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. 52, 3–6 (1999)

    CAS  Google Scholar 

  21. Martínez-Rodrigo, A., García-Martínez, B., Alcaraz, R., González, P., Fernández-Caballero, A.: Multiscale entropy analysis for recognition of visually elicited negative stress from EEG recordings. Int. J. Neural Syst. 29(02), 1850038 (2019)

    Article  Google Scholar 

  22. Nauta, W.J.: Neural associations of the frontal cortex. Acta Neurobiol. Exp. 32(2), 125–140 (1972)

    CAS  Google Scholar 

  23. Poria, S., Cambria, E., Bajpai, R., Hussain, A.: A review of affective computing: from unimodal analysis to multimodal fusion. Inf. Fusion 37, 98–125 (2017)

    Article  Google Scholar 

  24. Portnova, G., Maslennikova, A., Varlamov, A.: Same music, different emotions: assessing emotions and EEG correlates of music perception in children with ASD and typically developing peers. Adv. Autism 4(3), 85–94 (2018)

    Article  Google Scholar 

  25. Rubia, K.: The neurobiology of meditation and its clinical effectiveness in psychiatric disorders. Biol. Psychol. 82(1), 1–11 (2009)

    Article  Google Scholar 

  26. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980)

    Article  Google Scholar 

  27. Sanei, S.: Adaptive Processing of Brain Signals. Wiley, Hoboken (2013)

    Book  Google Scholar 

  28. Schröder, M., Cowie, R.: Towards emotion-sensitive multimodal interfaces: the challenge of the European Network of Excellence HUMAINE. In: Adapting the Interaction Style to Affective Factors Workshop in Conjunction with User Modeling (2005)

    Google Scholar 

  29. Soroush, M.Z., Maghooli, K., Setarehdan, S.K., Nasrabadi, A.M.: Emotion recognition through EEG phase space dynamics and Dempster-Shafer theory. Med. Hypotheses 127, 34–45 (2019)

    Article  Google Scholar 

  30. Valenza, G., Lanata, A., Scilingo, E.P.: The role of nonlinear dynamics in affective valence and arousal recognition. IEEE Trans. Affect. Comput. 3(2), 237–249 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Spanish Ministerio de Ciencia, Innovación y Universidades, Agencia Estatal de Investigación (AEI)/European Regional Development Fund (FEDER, UE) under EQC2019-006063-P, PID2020-115220RB-C21, and 2018/11744 grants, and by Biomedical Research Networking Centre in Mental Health (CIBERSAM) of the Instituto de Salud Carlos III. Beatriz García-Martínez holds FPU16/03740 scholarship from Spanish Ministerio de Educación y Formación Profesional.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz García-Martínez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

García-Martínez, B., Fernández-Caballero, A., Martínez-Rodrigo, A., Novais, P. (2021). Analysis of Electroencephalographic Signals from a Brain-Computer Interface for Emotions Detection. In: Rojas, I., Joya, G., Català, A. (eds) Advances in Computational Intelligence. IWANN 2021. Lecture Notes in Computer Science(), vol 12861. Springer, Cham. https://doi.org/10.1007/978-3-030-85030-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85030-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85029-6

  • Online ISBN: 978-3-030-85030-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics