Skip to main content

Feature and Time Series Extraction in Artificial Neural Networks for Arousal Detection from Electrodermal Activity

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2021)

Abstract

The detection of arousal is very important given its great implication on daily well-being. In this regards, the use of artificial neural networks and other classifiers applied to physiological signals has increased considerably. Different architectures for arousal detection using electrodermal activity are presented in this paper. Moreover, two different strategies are analysed and compared. The first one is based on the collection of 21 features (temporal, morphological, statistical and frequential), whereas the second used the processed EDA data (phasic component data) directly on different machine learning algorithms. The first approach offers F1-scores 92.02% and 90.95% for a multilayer perceptron and a one-dimensional convolutional network, respectively. For the second scenario, it has been found that the best F1-scores are 91.02% and 88.12% for bilateral long short-term memory and long short-term memory, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bakker, I., van der Voordt, T., Vink, P., de Boon, J.: Pleasure, arousal, dominance: Mehrabian and Russell revisited. Curr. Psychol. 33(3), 405–421 (2014)

    Article  Google Scholar 

  2. Bartolomé-Tomás, A., Sánchez-Reolid, R., Latorre, J.M., Fernández-Sotos, A., Fernández-Caballero, A.: Arousal detection in elderly people from electrodermal activity using musical stimuli. Sensors 20(17), 4788 (2020)

    Article  Google Scholar 

  3. Benedek, M., Kaernbach, C.: A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 190(1), 80–91 (2010)

    Article  Google Scholar 

  4. Braithwaite, J.J., Watson, D.G., Jones, R., Rowe, M.: A guide for analysing electrodermal activity (EDA) & skin conductance responses (SCRs) for psychological experiments. Psychophysiology 49(1), 1017–1034 (2013)

    Google Scholar 

  5. Castillo, J.C., Fernández-Caballero, A., Castro-González, Á., Salichs, M.A., López, M.T.: A framework for recognizing and regulating emotions in the elderly. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 320–327. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13105-4_46

    Chapter  Google Scholar 

  6. Chu, C.S.J.: Time series segmentation: a sliding window approach. Inf. Sci. 85(1–3), 147–173 (1995)

    Article  Google Scholar 

  7. Dar, M.N., Akram, M.U., Khawaja, S.G., Pujari, A.N.: CNN and LSTM-based emotion charting using physiological signals. Sensors 20(16), 4551 (2020)

    Article  Google Scholar 

  8. Dutande, P., Baid, U., Talbar, S.: LNCDS: a 2D–3D cascaded CNN approach for lung nodule classification, detection and segmentation. Biomed. Signal Process. Control 67, 102527 (2021). https://doi.org/10.1016/j.bspc.2021.102527

    Article  Google Scholar 

  9. Empatica: E4 Wristband from Empatica (2019). https://www.empatica.com/en-eu/research/e4/

  10. Fernández-Rodríguez, Á., Medina-Juliá, M.T., Velasco-Álvarez, F., Ron-Angevin, R.: Preliminary results using a P300 brain-computer interface speller: a possible interaction effect between presentation paradigm and set of stimuli. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019, Part I. LNCS, vol. 11506, pp. 371–381. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20521-8_31

    Chapter  Google Scholar 

  11. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. In: 1999 Ninth International Conference on Artificial Neural Networks, p. 470. IET (1999)

    Google Scholar 

  12. Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)

    Article  Google Scholar 

  13. Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2016)

    Article  Google Scholar 

  14. Karenbach, C.: Ledalab-a software package for the analysis of phasic electrodermal activity. Tech. rep., Allgemeine Psychologie, Institut für Psychologie (2005). http://www.ledalab.de/

  15. Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: a survey and novel approach. In: Data Mining in Time Series Databases, pp. 1–21. World Scientific (2004)

    Google Scholar 

  16. Loza, C.A., Principe, J.C.: The generalized sleep spindles detector: a generative model approach on single-channel EEGs. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019, Part I. LNCS, vol. 11506, pp. 127–138. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20521-8_11

    Chapter  Google Scholar 

  17. Martínez-Rodrigo, A., Fernández-Aguilar, L., Zangróniz, R., Latorre, J.M., Pastor, J.M., Fernández-Caballero, A.: Film mood induction and emotion classification using physiological signals for health and wellness promotion in older adults living alone. Expert Syst. 37(2), e12425 (2020)

    Article  Google Scholar 

  18. Mou, L., et al.: Driver stress detection via multimodal fusion using attention-based CNN-LSTM. Expert Syst. Appl. 173, 114693 (2021)

    Article  Google Scholar 

  19. Pineda, A.M., Ramos, F.M., Betting, L.E., Campanharo, A.S.L.O.: Use of complex networks for the automatic detection and the diagnosis of Alzheimer’s disease. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019, Part I. LNCS, vol. 11506, pp. 115–126. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20521-8_10

    Chapter  Google Scholar 

  20. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980). https://doi.org/10.1037/h0077714

    Article  Google Scholar 

  21. Sánchez-Reolid, R., Martínez-Rodrigo, A., Fernández-Caballero, A.: Stress identification from electrodermal activity by support vector machines. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2019, Part I. LNCS, vol. 11486, pp. 202–211. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19591-5_21

    Chapter  Google Scholar 

  22. Sánchez-Reolid, R., Martínez-Rodrigo, A., López, M.T., Fernández-Caballero, A.: Deep support vector machines for the identification of stress condition from electrodermal activity. Int. J. Neural Syst. 30(07), 2050031 (2020)

    Article  Google Scholar 

  23. Setz, C., Arnrich, B., Schumm, J., Marca, R.L., Troster, G., Ehlert, U.: Discriminating stress from cognitive load using a wearable EDA device. IEEE Trans. Inf. Technol. Biomed. 14(2), 410–417 (2010). https://doi.org/10.1109/titb.2009.2036164

    Article  PubMed  Google Scholar 

  24. Shakeel, M.F., Bajwa, N.A., Anwaar, A.M., Sohail, A., Khan, A., Haroon-ur-Rashid: Detecting driver drowsiness in real time through deep learning based object detection. In: Rojas, I., Joya, G., Catala, A. (eds.) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science, vol. 11506. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20521-8_24

  25. Susanto, I.Y., Pan, T.Y., Chen, C.W., Hu, M.C., Cheng, W.H.: Emotion recognition from galvanic skin response signal based on deep hybrid neural networks. In: 2020 International Conference on Multimedia Retrieval, pp. 341–345 (2020)

    Google Scholar 

  26. Wu, H., Yang, M., Yang, S., Lu, H., Wang, C., Rao, Y.: A novel DAS signal recognition method based on spatiotemporal information extraction with 1DCNNs-BiLSTM network. IEEE Access 8, 119448–119457 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially supported by Spanish Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación (AEI)/European Regional Development Fund (FEDER, UE) under EQC2019-006063-P and PID2020-115220RB-C21 grants, and by CIBERSAM of the Instituto de Salud Carlos III. Roberto Sánchez-Reolid holds BES-2017-081958 scholarship from Spanish Ministerio de Educación y Formación Profesional.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Fernández-Caballero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sánchez-Reolid, R., de la Rosa, F.L., Sánchez-Reolid, D., López, M.T., Fernández-Caballero, A. (2021). Feature and Time Series Extraction in Artificial Neural Networks for Arousal Detection from Electrodermal Activity. In: Rojas, I., Joya, G., Català, A. (eds) Advances in Computational Intelligence. IWANN 2021. Lecture Notes in Computer Science(), vol 12861. Springer, Cham. https://doi.org/10.1007/978-3-030-85030-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85030-2_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85029-6

  • Online ISBN: 978-3-030-85030-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics