Abstract
The detection of arousal is very important given its great implication on daily well-being. In this regards, the use of artificial neural networks and other classifiers applied to physiological signals has increased considerably. Different architectures for arousal detection using electrodermal activity are presented in this paper. Moreover, two different strategies are analysed and compared. The first one is based on the collection of 21 features (temporal, morphological, statistical and frequential), whereas the second used the processed EDA data (phasic component data) directly on different machine learning algorithms. The first approach offers F1-scores 92.02% and 90.95% for a multilayer perceptron and a one-dimensional convolutional network, respectively. For the second scenario, it has been found that the best F1-scores are 91.02% and 88.12% for bilateral long short-term memory and long short-term memory, respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bakker, I., van der Voordt, T., Vink, P., de Boon, J.: Pleasure, arousal, dominance: Mehrabian and Russell revisited. Curr. Psychol. 33(3), 405–421 (2014)
Bartolomé-Tomás, A., Sánchez-Reolid, R., Latorre, J.M., Fernández-Sotos, A., Fernández-Caballero, A.: Arousal detection in elderly people from electrodermal activity using musical stimuli. Sensors 20(17), 4788 (2020)
Benedek, M., Kaernbach, C.: A continuous measure of phasic electrodermal activity. J. Neurosci. Methods 190(1), 80–91 (2010)
Braithwaite, J.J., Watson, D.G., Jones, R., Rowe, M.: A guide for analysing electrodermal activity (EDA) & skin conductance responses (SCRs) for psychological experiments. Psychophysiology 49(1), 1017–1034 (2013)
Castillo, J.C., Fernández-Caballero, A., Castro-González, Á., Salichs, M.A., López, M.T.: A framework for recognizing and regulating emotions in the elderly. In: Pecchia, L., Chen, L.L., Nugent, C., Bravo, J. (eds.) IWAAL 2014. LNCS, vol. 8868, pp. 320–327. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-13105-4_46
Chu, C.S.J.: Time series segmentation: a sliding window approach. Inf. Sci. 85(1–3), 147–173 (1995)
Dar, M.N., Akram, M.U., Khawaja, S.G., Pujari, A.N.: CNN and LSTM-based emotion charting using physiological signals. Sensors 20(16), 4551 (2020)
Dutande, P., Baid, U., Talbar, S.: LNCDS: a 2D–3D cascaded CNN approach for lung nodule classification, detection and segmentation. Biomed. Signal Process. Control 67, 102527 (2021). https://doi.org/10.1016/j.bspc.2021.102527
Empatica: E4 Wristband from Empatica (2019). https://www.empatica.com/en-eu/research/e4/
Fernández-Rodríguez, Á., Medina-Juliá, M.T., Velasco-Álvarez, F., Ron-Angevin, R.: Preliminary results using a P300 brain-computer interface speller: a possible interaction effect between presentation paradigm and set of stimuli. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019, Part I. LNCS, vol. 11506, pp. 371–381. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20521-8_31
Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with LSTM. In: 1999 Ninth International Conference on Artificial Neural Networks, p. 470. IET (1999)
Graves, A., Schmidhuber, J.: Framewise phoneme classification with bidirectional LSTM and other neural network architectures. Neural Netw. 18(5–6), 602–610 (2005)
Greff, K., Srivastava, R.K., Koutník, J., Steunebrink, B.R., Schmidhuber, J.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2016)
Karenbach, C.: Ledalab-a software package for the analysis of phasic electrodermal activity. Tech. rep., Allgemeine Psychologie, Institut für Psychologie (2005). http://www.ledalab.de/
Keogh, E., Chu, S., Hart, D., Pazzani, M.: Segmenting time series: a survey and novel approach. In: Data Mining in Time Series Databases, pp. 1–21. World Scientific (2004)
Loza, C.A., Principe, J.C.: The generalized sleep spindles detector: a generative model approach on single-channel EEGs. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019, Part I. LNCS, vol. 11506, pp. 127–138. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20521-8_11
Martínez-Rodrigo, A., Fernández-Aguilar, L., Zangróniz, R., Latorre, J.M., Pastor, J.M., Fernández-Caballero, A.: Film mood induction and emotion classification using physiological signals for health and wellness promotion in older adults living alone. Expert Syst. 37(2), e12425 (2020)
Mou, L., et al.: Driver stress detection via multimodal fusion using attention-based CNN-LSTM. Expert Syst. Appl. 173, 114693 (2021)
Pineda, A.M., Ramos, F.M., Betting, L.E., Campanharo, A.S.L.O.: Use of complex networks for the automatic detection and the diagnosis of Alzheimer’s disease. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019, Part I. LNCS, vol. 11506, pp. 115–126. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20521-8_10
Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980). https://doi.org/10.1037/h0077714
Sánchez-Reolid, R., Martínez-Rodrigo, A., Fernández-Caballero, A.: Stress identification from electrodermal activity by support vector machines. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2019, Part I. LNCS, vol. 11486, pp. 202–211. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19591-5_21
Sánchez-Reolid, R., Martínez-Rodrigo, A., López, M.T., Fernández-Caballero, A.: Deep support vector machines for the identification of stress condition from electrodermal activity. Int. J. Neural Syst. 30(07), 2050031 (2020)
Setz, C., Arnrich, B., Schumm, J., Marca, R.L., Troster, G., Ehlert, U.: Discriminating stress from cognitive load using a wearable EDA device. IEEE Trans. Inf. Technol. Biomed. 14(2), 410–417 (2010). https://doi.org/10.1109/titb.2009.2036164
Shakeel, M.F., Bajwa, N.A., Anwaar, A.M., Sohail, A., Khan, A., Haroon-ur-Rashid: Detecting driver drowsiness in real time through deep learning based object detection. In: Rojas, I., Joya, G., Catala, A. (eds.) Advances in Computational Intelligence. IWANN 2019. Lecture Notes in Computer Science, vol. 11506. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20521-8_24
Susanto, I.Y., Pan, T.Y., Chen, C.W., Hu, M.C., Cheng, W.H.: Emotion recognition from galvanic skin response signal based on deep hybrid neural networks. In: 2020 International Conference on Multimedia Retrieval, pp. 341–345 (2020)
Wu, H., Yang, M., Yang, S., Lu, H., Wang, C., Rao, Y.: A novel DAS signal recognition method based on spatiotemporal information extraction with 1DCNNs-BiLSTM network. IEEE Access 8, 119448–119457 (2020)
Acknowledgements
This work has been partially supported by Spanish Ministerio de Ciencia e Innovación, Agencia Estatal de Investigación (AEI)/European Regional Development Fund (FEDER, UE) under EQC2019-006063-P and PID2020-115220RB-C21 grants, and by CIBERSAM of the Instituto de Salud Carlos III. Roberto Sánchez-Reolid holds BES-2017-081958 scholarship from Spanish Ministerio de Educación y Formación Profesional.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Sánchez-Reolid, R., de la Rosa, F.L., Sánchez-Reolid, D., López, M.T., Fernández-Caballero, A. (2021). Feature and Time Series Extraction in Artificial Neural Networks for Arousal Detection from Electrodermal Activity. In: Rojas, I., Joya, G., Català, A. (eds) Advances in Computational Intelligence. IWANN 2021. Lecture Notes in Computer Science(), vol 12861. Springer, Cham. https://doi.org/10.1007/978-3-030-85030-2_22
Download citation
DOI: https://doi.org/10.1007/978-3-030-85030-2_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85029-6
Online ISBN: 978-3-030-85030-2
eBook Packages: Computer ScienceComputer Science (R0)