Skip to main content

Fast Depth Reconstruction Using Deep Convolutional Neural Networks

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12861))

Included in the following conference series:

  • 1322 Accesses

Abstract

In this paper, we study depth reconstruction via RGB-based, Sparse-Depth, and RGBd approaches. We showed that combination of RGB and Sparse Depth approach in RGBd scenario provides the best results. We also proved that the models performance can be further tuned via proper selection of architecture blocks and number of depth points guiding RGB-to-depth reconstruction. We also provide real-time architecture for depth estimation that is on par with state-of-the-art real-time depth reconstruction methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. arXiv preprint arXiv:1406.2283 (2014)

  2. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)

    Google Scholar 

  3. Karsch, K., Liu, C., Kang, S.B.: Depth extraction from video using non-parametric sampling. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 775–788. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_56

    Chapter  Google Scholar 

  4. Korinevskaya, A., Makarov, I.: Fast depth map super-resolution using deep neural network. In: 2018 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), pp. 117–122. IEEE (2018)

    Google Scholar 

  5. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 239–248. IEEE (2016)

    Google Scholar 

  6. Li, Q., et al.: Deep learning based monocular depth prediction: Datasets, methods and applications. arXiv preprint arXiv:2011.04123 (2020)

  7. Liu, F., Shen, C., Lin, G.: Deep convolutional neural fields for depth estimation from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5162–5170 (2015)

    Google Scholar 

  8. Ma, F., Karaman, S.: Sparse-to-dense: depth prediction from sparse depth samples and a single image. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 4796–4803. IEEE (2018)

    Google Scholar 

  9. Makarov, I., Aliev, V., Gerasimova, O.: Semi-dense depth interpolation using deep convolutional neural networks. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 1407–1415. MM ’17, Association for Computing Machinery, New York, NY, USA (2017). https://doi.org/10.1145/3123266.3123360

  10. Makarov, I., Aliev, V., Gerasimova, O., Polyakov, P.: Depth map interpolation using perceptual loss. In: 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct), pp. 93–94. IEEE (2017)

    Google Scholar 

  11. Makarov, I., Korinevskaya, A., Aliev, V.: Fast semi-dense depth map estimation. In: Proceedings of the 2018 ACM Workshop on Multimedia for Real Estate Tech, pp. 18–21 (2018)

    Google Scholar 

  12. Makarov, I., Korinevskaya, A., Aliev, V.: Sparse depth map interpolation using deep convolutional neural networks. In: 2018 41st International Conference on Telecommunications and Signal Processing (TSP), pp. 1–5. IEEE (2018)

    Google Scholar 

  13. Makarov, I., Korinevskaya, A., Aliev, V.: Super-resolution of interpolated downsampled semi-dense depth map. In: Proceedings of the 23rd International ACM Conference on 3D Web Technology, pp. 1–2 (2018)

    Google Scholar 

  14. Makarov, I., et al.: On reproducing semi-dense depth map reconstruction using deep convolutional neural networks with perceptual loss. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1080–1084 (2019)

    Google Scholar 

  15. Maslov, D., Makarov, I.: Online supervised attention-based recurrent depth estimation from monocular video. Peer J. Comput. Sci. 6, e317 (2020)

    Google Scholar 

  16. Mur-Artal, R., Montiel, J.M.M., Tardos, J.D.: Orb-slam: a versatile and accurate monocular slam system. IEEE Trans. Robot. 31(5), 1147–1163 (2015)

    Article  Google Scholar 

  17. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015)

    Article  Google Scholar 

  18. Saxena, A., Chung, S.H., Ng, A.Y., et al.: Learning depth from single monocular images. NIPS 18, 1–8 (2005)

    Google Scholar 

  19. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Makarov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maslov, D., Makarov, I. (2021). Fast Depth Reconstruction Using Deep Convolutional Neural Networks. In: Rojas, I., Joya, G., Català, A. (eds) Advances in Computational Intelligence. IWANN 2021. Lecture Notes in Computer Science(), vol 12861. Springer, Cham. https://doi.org/10.1007/978-3-030-85030-2_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85030-2_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85029-6

  • Online ISBN: 978-3-030-85030-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics