Abstract
Cell instance segmentation in fluorescence microscopy images is becoming essential for cancer dynamics and prognosis. Data extracted from cancer dynamics allows to understand and accurately model different metabolic processes such as proliferation. This enables customized and more precise cancer treatments. However, accurate cell instance segmentation, necessary for further cell tracking and behavior analysis, is still challenging in scenarios with high cell concentration and overlapping edges. Within this framework, we propose a novel cell instance segmentation approach based on the well-known U-Net architecture. To enforce the learning of morphological information per pixel, a deep distance transformer (DDT) acts as a back-bone model. The DDT output is subsequently used to train a top-model. The following top-models are considered: a three-class (e.g., foreground, background and cell border) U-net, and a watershed transform. The obtained results suggest a performance boost over traditional U-Net architectures. This opens an interesting research line around the idea of injecting morphological information into a fully convolutional model.
This work is partially supported by the following Spanish grants: TIN2016-75097-P, RTI2018-094645-B-I00 and UMA18-FEDERJA-084. All of them include funds from the European Regional Development Fund (ERDF). The authors acknowledge the funding from the Universidad de Málaga and the Instituto de Investigación Biomédica de Málaga - IBIMA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alfaro, E., Fonseca, X.B., Albornoz, E.M., Martínez, C.E., Calderon-Ramirez, S.: A brief analysis of u-net and mask R-CNN for skin lesion segmentation. In: 2019 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), pp. 000123–000126. IEEE (2019)
Bai, M., Urtasun, R.: Deep watershed transform for instance segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5221–5229 (2017)
Bermudez, A., et al.: A first glance to the quality assessment of dental photostimulable phosphor plates with deep learning. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2020)
Bernard, O., Friboulet, D., Thevenaz, P., Unser, M.: Variational B-spline level-set: a linear filtering approach for fast deformable model evolution. IEEE Trans. Image Process. 18, 1179–1191 (2009)
Calderon-Ramirez, S., Saenz, A., Mora, R., Siles, F., Orozco, I., Buemi, M.: DeWAFF: a novel image abstraction approach to improve the performance of a cell tracking system. In: 2015 4th International Work Conference on IEEE Bioinspired Intelligence (IWOBI), pp. 81–88 (2015)
Calderon-Ramirez, S., Moya, D., Cruz, J.C., Valverde, J.M.: A first glance on the enhancement of digital cell activity videos from glioblastoma cells with nuclear staining. In: 2016 IEEE 36th Central American and Panama Convention (CONCAPAN XXXVI), pp. 1–6. IEEE (2016)
Calderon-Ramirez, S., Barrantes, J., Schuster, J., Mendez, M., Begera, J.: Automatic calibration of the deceived non local means filter for improving the segmentation of cells in fluorescence based microscopy. In: 2018 International Conference on Biomedical Engineering and Applications (ICBEA), pp. 1–6. IEEE (2018)
Calderon-Ramirez, S., et al.: Improving uncertainty estimations for mammogram classification using semi-supervised learning. In: International Joint Conference on Neural Networks (IJCNN) (2021)
Calderon-Ramirez, S., et al.: Improving uncertainty estimation with semi-supervised deep learning for covid-19 detection using chest x-ray images. IEEE Access 9, 85442–85454 (2021)
Decencière, E., et al.: Dealing with topological information within a fully convolutional neural network. In: Blanc-Talon, J., Helbert, D., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2018. LNCS, vol. 11182, pp. 462–471. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01449-0_39
Grevera, G.J.: Distance transform algorithms and their implementation and evaluation. In: Farag, A.A., Suri, J.S. (eds.) Deformable Models, pp. 33–60. Springer, New York (2007). https://doi.org/10.1007/978-0-387-68413-0_2
Guerrero-Pena, F.A., Fernandez, P.D.M., Ren, T.I., Yui, M., Rothen-berg, E., Cunha, A.: Multiclass weighted loss for instance segmentation of cluttered cells. arXiv:1802.07465 (2018)
He, K., Gkioxari, G., Dollar, P., Girshick, R.: Mask R-CNN. In: IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017)
Ljosa, V., Sokolnicki, K.L., Carpenter, A.E.: Annotated high-throughput microscopy image sets for validation. Nat. Methods 9, 637 (2012)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3413–3440 (2015)
Mahesh, M.: Fundamentals of medical imaging. Med. Phys. 38, 1735 (2011)
McGranahan, N., Swanton, C.: Clonal heterogeneity and tumor evolution: past, present, and the future. Cell 168, 613–628 (2017)
Meijering, E.: Cell segmentation: 50 years down the road. IEEE Signal Process. Mag. 29, 140–145 (2012)
Molina-Cabello, M.A., López-Rubio, E., Luque-Baena, R.M., Rodríguez-Espinosa, M.J., Thurnhofer-Hemsi, K.: Blood cell classification using the hough transform and convolutional neural networks. In: Rocha, Á., Adeli, H., Reis, L.P., Costanzo, S. (eds.) WorldCIST’18 2018. AISC, vol. 746, pp. 669–678. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77712-2_62
Molina-Cabello, M.A., Accino, C., López-Rubio, E., Thurnhofer-Hemsi, K.: Optimization of convolutional neural network ensemble classifiers by genetic algorithms. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019. LNCS, vol. 11507, pp. 163–173. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20518-8_14
Morgan, S., Watson, J., Twentyman, P., Smith, P.: Flow cytometric analysis of Hoechst 33342 uptake as an indicator of multi-drug resistance in human lung cancer. Br. J. Cancer 60, 282 (1989)
Papandreou, G., Chen, L.C., Murphy, K.P., Yuille, A.L.: Weakly-and semi-supervised learning of a deep convolutional network for semantic image segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1742–1750 (2015)
Phansalkar, N., More, S., Sabale, A., Joshi, M.: Adaptive local thresholding for detection of nuclei in diversity stained cytology images. In: 2011 International Conference on IEEE Communications and Signal Processing (ICCSP), pp. 218–220 (2011)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Sabnis, R.W.: Handbook of Biological Dyes and Stains: Synthesis and Industrial Applications. Wiley, Hoboken (2010)
Sixt, L., Wild, B., Landgraf, T.: Rendergan: generating realistic labeled data. Front. Robot. AI 5, 66 (2018)
Unnikrishnan, R., Pantofaru, C., Hebert, M.: Toward objective evaluation of image segmentation algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 6, 929–944 (2007)
Xie, W., Noble, J.A., Zisserman, A.: Microscopy cell counting and detection with fully convolutional regression networks. Comput. Methods Biomech. Biomed. Eng.: Imaging Vis. 6, 283–292 (2018)
Zamani, F., Safabakhsh, R.: An unsupervised gvf snake approach for white blood cell segmentation based on nucleus. In: 2006 8th International Conference on IEEE Signal Processing, vol. 2 (2006)
Calvo, I., Calderon, S., Torrents-Barrena, J., Muñoz, E., Puig, D.: Assessing the impact of a preprocessing stage on deep learning architectures for breast tumor multi-class classification with histopathological images. In: Crespo-Mariño, J.L., Meneses-Rojas, E. (eds.) CARLA 2019. CCIS, vol. 1087, pp. 262–275. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-41005-6_18
Sáenz, A., Calderón, S., Castro, J., Mora, R., Siles, F.: Deceived bilateral filter for improving the automatic cell segmentation and tracking in the NF-kB pathway without nuclear staining. In: Braidot, A., Hadad, A. (eds.) VI Latin American Congress on Biomedical Engineering CLAIB 2014, Paraná, Argentina 29, 30 & 31 October 2014. IP, vol. 49, pp. 345–348. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-13117-7_89
Oala, L., et al.: Ml4h auditing: from paper to practice. In: Machine Learning for Health, pp. 280–317. PMLR (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Zamora-Cárdenas, W. et al. (2021). Enforcing Morphological Information in Fully Convolutional Networks to Improve Cell Instance Segmentation in Fluorescence Microscopy Images. In: Rojas, I., Joya, G., Català, A. (eds) Advances in Computational Intelligence. IWANN 2021. Lecture Notes in Computer Science(), vol 12861. Springer, Cham. https://doi.org/10.1007/978-3-030-85030-2_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-85030-2_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85029-6
Online ISBN: 978-3-030-85030-2
eBook Packages: Computer ScienceComputer Science (R0)