Skip to main content

Deep Learning for Heart Sounds Classification Using Scalograms and Automatic Segmentation of PCG Signals

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12861))

Included in the following conference series:

  • 1532 Accesses

Abstract

This paper proposes a set of Deep Learning algorithms for classifying Phonocardiogram (PCG) scalogram. PCG signals contain valuable information about the heart health status, and they could help us in early detection and diagnosis of potential abnormalities. The system will classify into normal or abnormal categories, supported on reliable signal processing algorithms to automatically denoise and segment the sounds to improve the Deep Learning detection task. At the first stage, we denoised the PCG signal using a multi-resolution analysis based on the Discrete Wavelet Transform (DWT). At the second one, we segment automatically the sounds using an algorithm based on the Teager Energy Operator (TEO) and the autocorrelation. This is very important, because it is needed to select the S1 component related to the systole, and S2 component related to the diastole. Finally, scalogram images are obtained using Continuous Wavelet Transform (CWT). The classification task has been executed using the heart sounds from the 2016 PhysioNet/CinC Challenge database, and pretrained Convolutional Neural Networks (CNNs) ResNet152 and VGG16, achieving an accuracy of 91.19% and 90.75%, respectively. The results of our proposed model presents a good contribution to heart sounds classification area, in comparison with the state of the art accuracy which is 87%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alaskar, H., Alzhrani, N., Hussain, A., Almarshed, F.: The implementation of pretrained AlexNet on PCG classification. In: Huang, D.-S., Huang, Z.-K., Hussain, A. (eds.) ICIC 2019. LNCS (LNAI), vol. 11645, pp. 784–794. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26766-7_71

    Chapter  Google Scholar 

  2. Géron, A.: Hands-on machine learning with Scikit-Learn, Keras and TensorFlow: concepts, tools, and techniques to build intelligent systems (2019). https://www.oreilly.com/library/view/hands-on-machine-learning/9781492032632/

  3. Benali Amjoud, A., Amrouch, M.: Convolutional neural networks backbones for object detection. In: El Moataz, A., Mammass, D., Mansouri, A., Nouboud, F. (eds.) ICISP 2020. LNCS, vol. 12119, pp. 282–289. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51935-3_30

    Chapter  Google Scholar 

  4. Bentley, P., Nordehn, G., Coimbra, M., Mannor, S.: The PASCAL Classifying Heart Sounds Challenge 2011 (CHSC2011) Results (2011). http://www.peterjbentley.com/heartchallenge/index.html

  5. Chowdhury, T.H., Poudel, K.N., Hu, Y.: Time-frequency analysis, denoising, compression, segmentation, and classification of PCG signals. IEEE Access 8, 160882–160890 (2020). https://doi.org/10.1109/ACCESS.2020.3020806

    Article  Google Scholar 

  6. He, Y., Li, W., Zhang, W., Zhang, S., Pi, X., Liu, H.: Research on segmentation and classification of heart sound signals based on deep learning. Appl. Sci. 11(2), 1–15 (2021). https://doi.org/10.3390/app11020651

    Article  CAS  Google Scholar 

  7. Jain, P.K., Tiwari, A.K.: An adaptive thresholding method for the wavelet based denoising of phonocardiogram signal. Biomed. Signal Process. Control 38, 388–399 (2017). https://doi.org/10.1016/j.bspc.2017.07.002

  8. Khan, A., Sohail, A., Zahoora, U., Qureshi, A.S.: A survey of the recent architectures of deep convolutional neural networks. Artif. Intell. Rev. 53(8), 5455–5516 (2020). https://doi.org/10.1007/s10462-020-09825-6

  9. Khan, F.A., Abid, A., Khan, M.S.: Automatic heart sound classification from segmented/unsegmented phonocardiogram signals using time and frequency features. Physiol. Meas. 41(5), 55006 (2020). https://doi.org/10.1088/1361-6579/ab8770

  10. Khan, N.M., Khan, M.S., Khan, G.M.: Automated Heart Sound Classification from Unsegmented Phonocardiogram Signals Using Time Frequency Features (2018). https://doi.org/10.5281/ZENODO.1340418. https://zenodo.org/record/1340418

  11. Liu, C., et al.: An open access database for the evaluation of heart sound algorithms. Physiol. Meas. 37(12), 2181–2213 (2016). https://doi.org/10.1088/0967-3334/37/12/2181

  12. Liu, Q., Wu, X., Ma, X.: An automatic segmentation method for heart sounds. BioMedical Eng. OnLine 17(1), 106 (2018). https://doi.org/10.1186/s12938-018-0538-9

  13. Narváez, P., Gutierrez, S., Percybrooks, W.S.: Automatic segmentation and classification of heart sounds using modified empirical wavelet transform and power features. Appl. Sci. 10(14) (2020). https://doi.org/10.3390/app10144791

  14. Nathalie Japkowicz, M.S.: Evaluating Learning Algorithms: A Classification Perspective (2011)

    Google Scholar 

  15. World Health Organization: A global brief on hypertension (2013). https://www.who.int/cardiovascular_diseases/publications/global_brief_hypertension/en/

  16. World Health Organization: Cardiovascular diseases (CVDs) (2017). https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

  17. World Health Organization: WHO reveals leading causes of death and disability worldwide: 2000–2019 (2020). https://www.who.int/news/item/09-12-2020-who-reveals-leading-causes-of-death-and-disability-worldwide-2000-2019

  18. Ramović, A., Bandić, L., Kevrić, J., Germović, E., Subasi, A.: Wavelet and teager energy operator (TEO) for heart sound processing and identification. In: Badnjevic, A. (ed.) CMBEBIH 2017, pp. 495–502. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-4166-2_76

    Chapter  Google Scholar 

  19. Sabir, M.K.: PCG signal analysis using Teager energy operator & autocorrelation function. In: International Conference on Computer Medical Applications, ICCMA 2013 (2013). https://doi.org/10.1109/ICCMA.2013.6506176

  20. Springer, D., Tarassenko, L., Clifford, G.: Logistic regression-HSMM-based heart sound segmentation. IEEE Trans. Biomed. Eng. 1 (2015). https://doi.org/10.1109/TBME.2015.2475278. http://ieeexplore.ieee.org/document/7234876/

  21. WEISANG: Continuous Wavelet Transform (CWT) (2019). https://www.weisang.com/en/documentation/timefreqspectrumalgorithmscwt_en/

Download references

Acknowledgement

This work was partially funded by the University of Nariño and eVIDA group IT905-16 of the University of Deusto.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Gelpud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gelpud, J., Castillo, S., Jojoa, M., Garcia-Zapirain, B., Achicanoy, W., Rodrigo, D. (2021). Deep Learning for Heart Sounds Classification Using Scalograms and Automatic Segmentation of PCG Signals. In: Rojas, I., Joya, G., Català, A. (eds) Advances in Computational Intelligence. IWANN 2021. Lecture Notes in Computer Science(), vol 12861. Springer, Cham. https://doi.org/10.1007/978-3-030-85030-2_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85030-2_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85029-6

  • Online ISBN: 978-3-030-85030-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics