Skip to main content

The Descriptiveness of Feature Descriptors with Reduced Dimensionality

  • Conference paper
  • First Online:
New Trends in Database and Information Systems (ADBIS 2021)

Abstract

Nowadays, depth data has an important role in many applications. The sensors which can capture depth data became essential parts of autonomous vehicles. These sensors record a huge amount of 3D data (point clouds with x, y, and z coordinates). Furthermore, for many point cloud processing applications, it is important to calculate feature vectors that aim at describing the neighborhood of each point. Usually, a feature vector has high dimensionality, and storing it in a database is a difficult task. One of the most common operations on feature descriptors is the nearest neighbor search. However, earlier works show that nearest neighbor search with spatial index structures in high dimensions could be outperformed by sequential scan. In this work, we investigate how dimensionality reduction on 3D feature descriptors affects the descriptiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor" meaningful? In: Beeri, C., Buneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp. 217–235. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49257-7_15

    Chapter  Google Scholar 

  2. Fukunaga, K., Olsen, D.R.: An algorithm for finding intrinsic dimensionality of data. IEEE Trans. Comput. 100(2), 176–183 (1971)

    Article  Google Scholar 

  3. Glocker, B., Izadi, S., Shotton, J., Criminisi, A.: Real-time RGB-D camera relocalization. In: 2013 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), pp. 173–179 (2013)

    Google Scholar 

  4. Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., Kwok, N.: A comprehensive performance evaluation of 3d local feature descriptors. Int. J. Comput. Vis. 116, 66–89 (2015)

    Google Scholar 

  5. Holz, D., Ichim, A.E., Tombari, F., Rusu, R.B., Behnke, S.: Registration with the point cloud library: a modular framework for aligning in 3-d. IEEE Robot. Autom. Mag. 22(4), 110–124 (2015)

    Article  Google Scholar 

  6. H’roura, J., Roy, M., Mansouri, A., Mammass, D., Juillion, P., Bouzit, A., Méniel, P.: Salient spin images: a descriptor for 3d object recognition. In: Mansouri, A., El Moataz, A., Nouboud, F., Mammass, D. (eds.) ICISP 2018. LNCS, vol. 10884, pp. 233–242. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94211-7_26

    Chapter  Google Scholar 

  7. Korn, F., Pagel, B.U., Faloutsos, C.: On the" dimensionality curse" and the" self-similarity blessing". IEEE Trans. Knowl. Data Eng. 13(1), 96–111 (2001)

    Article  Google Scholar 

  8. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Google Scholar 

  9. Mian, A., Bennamoun, M., Owens, R.: On the repeatability and quality of keypoints for local feature-based 3d object retrieval from cluttered scenes. Int. J. Comput. Vis. 89, 348–361 (2010)

    Google Scholar 

  10. Prakhya, S., Liu, B., Lin, W., Li, K., Xiao, Y.: On creating low dimensional 3d feature descriptors with PCA. In: TENCON 2017–2017 IEEE Region 10 Conference, pp. 315–320 (November 2017)

    Google Scholar 

  11. Rusu, R., Marton, Z., Blodow, N., Beetz, M.: Persistent point feature histograms for 3d point clouds. In: Proceedings of the 10th International Conference on Intelligent Autonomous Systems (IAS-10), vol. 16 (January 2008)

    Google Scholar 

  12. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (fpfh) for 3d registration. In: 2009 IEEE International Conference on Robotics and Automation, pp. 3212–3217 (2009)

    Google Scholar 

  13. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan Kaufmann, Burlington (2006)

    Google Scholar 

  14. Spezialetti, R., Salti, S., Di Stefano, L.: Performance evaluation of learned 3d features. In: Ricci, E., Rota Bulò, S., Snoek, C., Lanz, O., Messelodi, S., Sebe, N. (eds.) ICIAP 2019. LNCS, vol. 11751, pp. 519–531. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30642-7_47

    Chapter  Google Scholar 

  15. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. VLDB 98, 194–205 (1998)

    Google Scholar 

Download references

Acknowledgements

The authors thank the support of project “Application Domain Specific Highly Reliable IT Solutions” that has been implemented with the support provided from the National Research, Development and Innovation Fund of Hungary, financed under the Thematic Excellence Programme TKP2020-NKA-06 (National Challenges Subprogramme) funding scheme.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Varga, D., Szalai-Gindl, J.M., Laki, S. (2021). The Descriptiveness of Feature Descriptors with Reduced Dimensionality. In: Bellatreche, L., et al. New Trends in Database and Information Systems. ADBIS 2021. Communications in Computer and Information Science, vol 1450. Springer, Cham. https://doi.org/10.1007/978-3-030-85082-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85082-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85081-4

  • Online ISBN: 978-3-030-85082-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics