Skip to main content

Performance Evaluation of Classical Classifiers and Deep Learning Approaches for Polymers Classification Based on Hyperspectral Images

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12862))

Included in the following conference series:

Abstract

Plastics are very valuable material for their desirable characteristics being one of them, their durability. But this characteristic turns plastics into an environmental problem when they end in the environment, and they become one source of contamination that can last for centuries. Thus, the first step for effective recycling is to identify correctly the types of plastics. In this paper, different classical classifiers as Random Forest, KNN, or SVM are compared with 1-D CNN and LSTM to classify plastics from hyperspectral images. Also, Partial Least Squares Discriminant Analysis has been included as the baseline because is one of the most widely used classifiers in the field of the Chemometrics community. The images were preprocessed with several techniques as Standard Normal Variate or Savitzky-Golay Polynomial Derivative to compare their effectiveness with raw data with the classifiers. The experiments were carried out using hyperspectral images with a 240 bands spectrum, and six types of polymers were considered (PE, PA, PP, PS, PVC, EPS). The best results were obtained with SVM+RBF and 1-D CNN with an accuracy of 99.41% and 99.31% respectively, preprocessing the images previously with Standard Normal Variate. Also, PCA and t-SNE methods were tested for dimensionality reduction, but they don’t improve the classifier performance.

This work was supported in part by the project IMPLAMAC (MAC2/1.1a/265) financed by the Interreg MAC (European Fund to Regional Development, Macaronesian Cooperation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hyperspectral image analysis. A tutorial. Analytica Chimica Acta 896, 34–51, October 2015. https://doi.org/10.1016/J.ACA.2015.09.030

  2. Abdolmaleki, M., Fathianpour, N., Tabaei, M.: Evaluating the performance of the wavelet transform in extracting spectral alteration features from hyperspectral images. Int. J. Remote Sens. 39(19), 6076–6094 (2018). https://doi.org/10.1080/01431161.2018.1434324

    Article  Google Scholar 

  3. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, eidelberg (2006)

    MATH  Google Scholar 

  4. Bonifazi, G., Capobianco, G., Serranti, S.: A hierarchical classification approach for recognition of low-density (LDPE) and high-density polyethylene (HDPE) in mixed plastic waste based on short-wave infrared (SWIR) hyperspectral imaging. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 198, 115–122 (2018). https://doi.org/10.1016/J.SAA.2018.03.006

    Article  Google Scholar 

  5. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001). https://doi.org/10.1023/A:1010933404324

  6. Breiman, L., Friedman, J.H., Olshen, R.A., Stone, C.J.: Classification and Regression Trees. Wadsworth & Brooks (1993)

    Google Scholar 

  7. Brereton, R.G., Lloyd, G.R.: Partial least squares discriminant analysis: taking the magic away. J. Chemom. 28(4), 213–225 (2014). https://doi.org/10.1002/cem.2609

    Article  Google Scholar 

  8. Bruce, L.M., Koger, C.H., Li, J.: Dimensionality reduction of hyperspectral data using discrete wavelet transform feature extraction. IEEE Trans. Geosci. Remote Sens. 40(10), 2331–2338 (2002)

    Article  Google Scholar 

  9. Calin, M.A., Parasca, S.V., Savastru, D., Manea, D.: Hyperspectral imaging in the medical field: present and future AU - Calin, Mihaela Antonina. Appl. Spectrosc. Rev. 49(6), 435–447 (2014). https://doi.org/10.1080/05704928.2013.838678

    Article  Google Scholar 

  10. Chen, Y., Jiang, H., Li, C., Jia, X., Ghamisi, P.: Deep feature extraction and classification of hyperspectral images based on convolutional neural networks. IEEE Trans. Geosci. Remote Sens. 54(10), 6232–6251 (2016). https://doi.org/10.1109/TGRS.2016.2584107

    Article  Google Scholar 

  11. Chen, Y., Lin, Z., Zhao, X., Wang, G., Gu, Y.: Deep learning-based classification of hyperspectral data. IEEE J. Sel. Top. Appl. Earth Observations Remote Sens. 7(6), 2094–2107 (2014). https://doi.org/10.1109/JSTARS.2014.2329330

    Article  Google Scholar 

  12. Cheriyadat, A., Bruce, L.M.: Why principal component analysis is not an appropriate feature extraction method for hyperspectral data. In: IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477). vol. 6, pp. 3420–3422 (2003). https://doi.org/10.1109/IGARSS.2003.1294808

  13. Chiang, S., Chang, C., Ginsberg, I.W.: Unsupervised target detection in hyperspectral images using projection pursuit. IEEE Trans. Geosci. Remote Sens. 39(7), 1380–1391 (2001). https://doi.org/10.1109/36.934071

    Article  Google Scholar 

  14. Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory 36(5), 961–1005 (1990)

    Article  MathSciNet  Google Scholar 

  15. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley-Interscience, New York (2000)

    MATH  Google Scholar 

  16. Duro, D.C., Franklin, S.E., Dubé, M.G.: A comparison of pixel-based and object-based image analysis with selected machine learning algorithms for the classification of agricultural landscapes using SPOT-5 HRG imagery. Remote Sens. Environ. 118, 259–272 (2012). https://doi.org/10.1016/j.rse.2011.11.020

    Article  Google Scholar 

  17. Fabelo, H., et al.: An intraoperative visualization system using hyperspectral imaging to aid in brain tumor delineation. Sensors (Switzerland) 18(2) (2018). https://doi.org/10.3390/s18020430

  18. Goetz, A.F.H.: Three decades of hyperspectral remote sensing of the Earth: a personal view. Remote Sens. Environ. 113, S5–S16 (2009)

    Article  Google Scholar 

  19. Gowen, A.A., O’Donnell, C., Cullen, P.J., Downey, G., Frias, J.M.: Hyperspectral imaging-an emerging process analytical tool for food quality and safety control. Trends Food Sci. Technol. 18(12), 590–598 (2007)

    Article  Google Scholar 

  20. Haykin, S.: Neural Networks; A comprehensive Foundation, 1st edn. Macmillan, New York (1994)

    MATH  Google Scholar 

  21. Khan, M.J., Khan, H.S., Yousaf, A., Khurshid, K., Abbas, A.: Modern Trends in Hyperspectral Image Analysis: A Review. IEEE Access 6, 14118–14129 (2018)

    Article  Google Scholar 

  22. Khodr, J., Younes, R.: Dimensionality reduction on hyperspectral images: A comparative review based on artificial datas. In: 2011 4th International Congress on Image and Signal Processing. vol. 4, pp. 1875–1883 (2011). DOI: 10.1109/CISP.2011.6100531

    Google Scholar 

  23. Kulcke, A., Gurschler, C., Spöck, G., Leitner, R., Kraft, M.: On-Line Classification of Synthetic Polymers Using near Infrared Spectral Imaging. J. Near Infrared Spectrosc. 11(1), 71–81 (2003). https://doi.org/10.1255/jnirs.355

    Article  Google Scholar 

  24. López, S., et al.: A novel use of hyperspectral images for human brain cancer detection using in-vivo samples. In: Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies - (Volume 4), pp. 311–320 (2016). https://doi.org/10.5220/0005849803110320

  25. Lu, G., Fei, B.: Medical hyperspectral imaging: a review. J. Biomed. Optics 19(1), 1–25 (2014)

    Google Scholar 

  26. van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(Nov), 2579–2605 (2008)

    MATH  Google Scholar 

  27. Moroni, M., Mei, A., Leonardi, A., Lupo, E., Marca, F.L.: PET and PVC separation with hyperspectral imagery. Sensors 15(1), 2205–2227 (2015). https://doi.org/10.3390/s150102205

    Article  Google Scholar 

  28. Paoletti, M., Haut, J., Plaza, J., Plaza, A.: Deep learning classifiers for hyperspectral imaging: a review. ISPRS J. Photogrammetry Remote Sens. 158, 279–317 (2019). https://doi.org/10.1016/j.isprsjprs.2019.09.006, https://www.sciencedirect.com/science/article/pii/S0924271619302187

  29. Polak, A., et al.: Hyperspectral imaging combined with data classification techniques as an aid for artwork authentication. J. Cultural Heritage 26, 1–11 (2017). https://doi.org/10.1016/J.CULHER.2017.01.013

  30. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kauffman Pub. Inc., Los Altos (1993)

    Google Scholar 

  31. Rinnan, Å., van den Berg, F., Engelsen, S.B.: Review of the most common pre-processing techniques for near-infrared spectra. TrAC, Trends Anal. Chem. 28(10), 1201–1222 (2009). https://doi.org/10.1016/j.trac.2009.07.007

    Article  Google Scholar 

  32. Serranti, S., Gargiulo, A., Bonifazi, G.: Characterization of post-consumer polyolefin wastes by hyperspectral imaging for quality control in recycling processes. Waste Manage. 31(11), 2217–2227 (2011). https://doi.org/10.1016/J.WASMAN.2011.06.007

    Article  Google Scholar 

  33. Serranti, S., Palmieri, R., Bonifazi, G., Cózar, A.: Characterization of microplastic litter from oceans by an innovative approach based on hyperspectral imaging. Waste Manage. 76, 117–125 (2018). https://doi.org/10.1016/j.wasman.2018.03.003

    Article  Google Scholar 

  34. Teke, M., Deveci, H.S., Haliloglu, O., Gurbuz, S.Z., Sakarya, U.: A short survey of hyperspectral remote sensing applications in agriculture. In: RAST 2013 - Proceedings of 6th International Conference on Recent Advances in Space Technologies, pp. 171–176 (2013). https://doi.org/10.1109/RAST.2013.6581194

  35. Tiwari, K., Arora, M., Singh, D.: An assessment of independent component analysis for detection of military targets from hyperspectral images. Int. J. Appl. Earth Observation Geoinformation 13(5), 730–740 (2011). https://doi.org/10.1016/J.JAG.2011.03.007

  36. Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1999). https://doi.org/10.1007/978-1-4757-3264-1

  37. Vidal, M., Gowen, A., Amigo, J.M.: NIR hyperspectral imaging for plastics classification. NIR News 23(1), 13–15 (2012). https://doi.org/10.1255/nirn.1285

    Article  Google Scholar 

  38. Wu, K., Xu, G., Zhang, Y., Du, B.: Hyperspectral image target detection via integrated background suppression with adaptive weight selection. Neurocomputing 315, 59–67 (2018). https://doi.org/10.1016/J.NEUCOM.2018.06.017

  39. Yang, X., Ye, Y., Li, X., Lau, R.Y.K., Zhang, X., Huang, X.: Hyperspectral image classification with deep learning models. IEEE Trans. Geosci. Remote Sens. 56(9), 5408–5423 (2018). https://doi.org/10.1109/TGRS.2018.2815613

    Article  Google Scholar 

  40. Zhang, J., Chen, L., Zhuo, L., Liang, X., Li, J.: An efficient hyperspectral image retrieval method: Deep spectral-spatial feature extraction with DCGAN and dimensionality reduction using t-SNE-based NM hashing. Remote Sens. 10(2) (2018). https://doi.org/10.3390/rs10020271

  41. Zheng, Y., Bai, J., Xu, J., Li, X., Zhang, Y.: A discrimination model in waste plastics sorting using NIR hyperspectral imaging system. Waste Manage. N.Y.) 72, 87–98 (2018). https://doi.org/10.1016/j.wasman.2017.10.015

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Lorenzo-Navarro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lorenzo-Navarro, J., Serranti, S., Bonifazi, G., Capobianco, G. (2021). Performance Evaluation of Classical Classifiers and Deep Learning Approaches for Polymers Classification Based on Hyperspectral Images. In: Rojas, I., Joya, G., CatalĂ , A. (eds) Advances in Computational Intelligence. IWANN 2021. Lecture Notes in Computer Science(), vol 12862. Springer, Cham. https://doi.org/10.1007/978-3-030-85099-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85099-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85098-2

  • Online ISBN: 978-3-030-85099-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics