Skip to main content

Analyzing the Land Cover Change and Degradation in Sundarbans Mangrove Forest Using Machine Learning and Remote Sensing Technique

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12862))

Included in the following conference series:

  • 1071 Accesses

Abstract

The purpose of our research work is to understand the efficiency and advantage of applying machine learning technique on remote sensing data collected from one of the largest mangrove forests in the world, named Sundarbans. Our study area was Sundarbans mangrove forest, and we have detected land cover changes in this area. The images we have used were collected from Landsat 8 OLI, ETM+, TM data. After pre-processing the images, we classified them applying the Maximum Likelihood classifier. We got overall accuracy of 80%, 75%, and 77.1% and kappa efficiency 0.80, 0.62, and 0.69 for the years 2001, 2011, 2021 respectively. To determine the overall accuracy and kappa efficiency, we have used confusion matrix. In the last 20 years, Sundarbans mangrove forest has declined by 0.2% due to human settlements, deforestation, natural calamity, increasing water salinity etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Reference

  1. Shimu, S.A., Aktar, M., Afjal, M.I., Nitu, A.M., Uddin, M.P., Mamun, M.A.: NDVI based change detection in Sundarban mangrove forest using remote sensing data. In: 4th International Conference on Electrical Information and Communication Technology (EICT) (2019)

    Google Scholar 

  2. Rahman, M.M., Ullah, M.R., Lan, M., Sumantyo, J.S., Kuze, H., Tateishi, R.: Comparison of Landsat image classification methods for detecting mangrove forests in Sundarbans. Int. J. Remote Sens. 34(4), 1041–1056 (2013)

    Article  Google Scholar 

  3. Mandal, M.S.H., Hosaka, T.: Assessing cyclone disturbances (1988–2016) in the Sundarbans mangrove forests using Landsat and Google Earth Engine. Nat. Hazards 102(1), 133–150 (2020). https://doi.org/10.1007/s11069-020-03914-z

    Article  Google Scholar 

  4. Islam, M.M., Borgqvist, H., Kumar, L.: Monitoring mangrove forest landcover changes in the coastline of Bangladesh from 1976 to 2015. Geocarto Int. 34(13), 1458–1476 (2019)

    Article  Google Scholar 

  5. Mondal, S.H., Debnath, P.: Spatial and temporal changes of Sundarbans reserve forest in Bangladesh. Environ. Nat. Res. J. 15(1), 51–61 (2017)

    Google Scholar 

  6. Rahman, M.M., Lagomasino, D., Lee, S., Fatoyinbo, T.: Improved assessment of mangrove forests in Sundarbans east wildlife sanctuary using WorldView 2 and TanDEM-X high resolution imagery. Remote Sens. Ecol. Conserv. 5(2), 136–149 (2019)

    Google Scholar 

  7. Kai Liu, X.L., Shi, X., Wang, S.: Monitoring mangrove forest changes using remote sensing and GIS data with decision-tree learning. Wetlands 28(2), 336–346 (2008)

    Google Scholar 

  8. Awty-Carroll, K., Bunting, P., Hardy, A., Bell, G.: Using continuous change detection and classification of Landsat data to investigate long-term mangrove dynamics in the Sundarbans region. Remote Sens. 11(23), 2833 (2019)

    Article  Google Scholar 

  9. Thakur, S., et al.: Assessment of changes in land use, land cover, and land surface temperature in the mangrove forest of Sundarbans. Environ. Dev. Sustain. 23(2), 1917–1943 (2020)

    Google Scholar 

  10. Rahman, M., Begum, S.: Land cover change analysis around the Sundarbans mangrove forest of Bangladesh using remote sensing and GIS application. JSF 9(1–2), 95–107 (2013)

    Google Scholar 

  11. Sardar, P., Samadder, S.R.: Understanding the dynamics of landscape of greater Sundarban area using multi-layer perceptron Markov chain and landscape statistics approach. Ecol. Ind. 121, 106914 (2021)

    Google Scholar 

  12. Datta, D., Deb, S.: Analysis of coastal land use/land cover changes in the Indian Sunderbans using remotely sensed data. Geo-spatial Inf. Sci. 15(4), 241–250 (2012)

    Article  Google Scholar 

  13. Kumar, M., Mondal, I., Pham, Q.B.: Monitoring forest landcover changes in the Eastern Sundarban of Bangladesh from 1989 to 2019. Acta Geophys. 69, 561–577 (2021). https://doi.org/10.1007/s11600-021-00551-3

  14. Giri, S., et al.: A study on abundance and distribution of mangrove species in Indian Sundarban using remote sensing technique. J. Coast. Conserv. 18(4), 359–367 (2014). https://doi.org/10.1007/s11852-014-0322-3

    Article  Google Scholar 

  15. Kar, N.S., Bandyopadhyay, S.: Tropical storm Aila in Gosaba block of Indian Sundarban: remote sensing based assessment of impact and recovery. Geogr. Rev. India 77(1), 40–54 (2015)

    Google Scholar 

  16. Ghosh, M.K., Kumar, L., Roy, C.: Mapping long-term changes in mangrove species composition and distribution in the Sundarbans. Forests 7(12), 305 (2016)

    Article  Google Scholar 

  17. Debnath, A.: Land use and land cover change detection of Gosaba Island of the Indian Sundarban Region by using multitemporal satellite image. Int. J. Hum. Soc. Sci. 7(1), 209–217 (2018)

    Google Scholar 

  18. Salam, M.A., Ross, L.G., Beveridge, C.M.C.: The use of GIS and remote sensing techniques to classify the Sundarbans mangrove vegetation. J. Agrofor. Environ. 1(1), 7–15 (2007)

    Google Scholar 

  19. Ramteke, I.K., et al.: Land Use/Land Cover Change Dynamics in Coastal Ecosystem of Sundarban Delta, West Bengal-A Case Study of Bali Island (2017)

    Google Scholar 

  20. Prusty, B.A.K., Chandra, R., Azeez, P.A. (eds.): Wetland Science. Springer, New Delhi (2017). https://doi.org/10.1007/978-81-322-3715-0

    Book  Google Scholar 

  21. Global Watch. https://www.globalmangrovewatch.org/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashedur M. Rahman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khan, A.R., Khan, A., Masud, S., Rahman, R.M. (2021). Analyzing the Land Cover Change and Degradation in Sundarbans Mangrove Forest Using Machine Learning and Remote Sensing Technique. In: Rojas, I., Joya, G., Català, A. (eds) Advances in Computational Intelligence. IWANN 2021. Lecture Notes in Computer Science(), vol 12862. Springer, Cham. https://doi.org/10.1007/978-3-030-85099-9_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85099-9_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85098-2

  • Online ISBN: 978-3-030-85099-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics