Skip to main content

Effect of Electrical Synapses in the Cycle-by-Cycle Period and Burst Duration of Central Pattern Generators

  • Conference paper
  • First Online:
Advances in Computational Intelligence (IWANN 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12862))

Included in the following conference series:

  • 935 Accesses

Abstract

Central Pattern Generators (CPGs) are neural circuits that generate robust coordinated neural activity to control motor rhythms. Many CPGs are convenient neural circuits for locomotion control in autonomous robots. In this context, invertebrate CPGs are key networks to understand rhythm generation and coordination, as their cells and connections can be identified and mapped, like in the crustacean pyloric CPG. Experiments during the last decades have shown that mutual inhibition by chemical synapses together with electrical coupling underlie the timing of neuron activations that shape each rhythm cycle of this CPG. Due to the presence of inhibitory and electrical synapses, regular and irregular triphasic spiking-bursting activity can be found in the pyloric CPG, always preserving the same neuron activation sequence. In this study, we use a model of this well-known CPG to assess the role of electrical synapses in shaping the cycle-by-cycle period and individual cell burst duration. We show that electrical coupling strength asymmetrically affects the burst duration of each individual neuron, as well as the overall cycle-by-cycle duration. Our results support the view that electrical coupling largely contributes to shape the intervals that define functional sequences in CPGs, which can be applied in bioinspired autonomous robotic motor control.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kandel, E.R., Schwartz, J.H., Jessell, T.M.: Principles of Neural Science, 5th edn. McGraw-Hill Education, New York (2012)

    Google Scholar 

  2. Connors, B.W., Long, M.A.: Electrical synapses in the mammalian brain. Annu. Rev. Neurosci. 27, 393–418 (2004)

    Article  Google Scholar 

  3. Sánchez, A., Castro, C., Flores, D.L., Gutiérrez, E., Baldi, P.: Gap junction channels of innexins and connexins: relations and computational perspectives. Int. J. Mol. Sci. 20, 2476 (2019)

    Article  Google Scholar 

  4. Elices, I., Levi, R., Arroyo, D., Rodriguez, F.B., Varona, P.: Robust dynamical invariants in sequential neural activity. Sci. Rep. 9, 9048 (2019)

    Article  Google Scholar 

  5. Buzsáki, G., Tingley, D.: Space and time: the hippocampus as a sequence generator. Trends Cogn. Sci. 22(10), 853–869 (2018)

    Article  Google Scholar 

  6. Paton, J.J., Buonomano, D.V.: The neural basis of timing: distributed mechanisms for diverse functions. Neuron 98(4), 687–705 (2018)

    Article  Google Scholar 

  7. Varona, P., Torres, J.J., Abarbanel, H., Rabinovich, M., Elson, R.: Dynamics of two electrically coupled chaotic neurons: experimental observations and model analysis. Biol. Cybern. 84(2), 91–101 (2001)

    Article  Google Scholar 

  8. Nadim, F., Li, X., Gray, M., Golowasch, J.: The role of electrical coupling in rhythm generation in small networks. In: Jing, J. (ed.) Network Functions and Plasticity, pp. 51–78. Academic Press (2017)

    Google Scholar 

  9. Varona, P., Torres, J., Huerta, R., Abarbanel, H., Rabinovich, M.: Regularization mechanisms of spiking-bursting neurons. Neural Netw. 14(6–7), 865–875 (2001)

    Article  Google Scholar 

  10. Venaille, A., Varona, P., Rabinovich, M.I.: Synchronization and coordination of sequences in two neural ensembles. Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 71(6 Pt 1), 61909 (2005)

    Google Scholar 

  11. Chorev, E., Yarom, Y., Lampl, I.: Rhythmic episodes of subthreshold membrane potential oscillations in the rat inferior olive nuclei in vivo. J. Neurosci. 27(19), 5043–5052 (2007)

    Article  Google Scholar 

  12. Jing, J., Cropper, E., Weiss, K.: Network functions of electrical coupling present in multiple and specific sites in behavior-generating circuits. In: Jing, J. (ed.) Network Functions and Plasticity, pp. 79–107. Academic Press (2017)

    Google Scholar 

  13. Varona, P., Aguirre, C., Torres, J., Rabinovich, M., Abarbanel, H., Rabinovich, M.: Spatio-temporal patterns of network activity in the inferior olive. Neurocomputing 44–46, 685–690 (2002)

    Article  Google Scholar 

  14. Kepler, T.B., Marder, E., Abbott, L.F.: The effect of electrical coupling on the frequency of model neuronal oscillators. Science 248, 83–85 (1990)

    Google Scholar 

  15. Latorre, R., Aguirre, C., Rabinovich, M., Varona, P.: Transient dynamics and rhythm coordination of inferior olive spatio-temporal patterns. Front. Neural Circ. 7, 138 (2013)

    Google Scholar 

  16. Leznik, E., Llinás, R.: Role of gap junctions in synchronized neuronal oscillations in the inferior olive. J. Neurophysiol. 94(4), 2447–2456 (2005)

    Article  Google Scholar 

  17. Selverston, A.J., et al.: Reliable circuits from irregular neurons: a dynamical approach to understanding central pattern generators. J. Physiol. Paris 94(5–6), 357–374 (2000)

    Article  Google Scholar 

  18. Katz, P.S., Quinlan, P.D.: The importance of identified neurons in gastropod molluscs to neuroscience. Curr. Opin. Neurobiol. 56, 1–7 (2019)

    Article  Google Scholar 

  19. Marder, E., Bucher, D.: Understanding circuit dynamics using the stomatogastric nervous system of lobsters and crabs. Annu. Rev. Physiol. 69(1), 291–316 (2007)

    Article  Google Scholar 

  20. Katz, P., et al.: Vertebrate versus invertebrate neural circuits. Curr. Biol. 23(12), R504–R506 (2013)

    Article  Google Scholar 

  21. Ijspeert, A.J.: Central pattern generators for locomotion control in animals and robots: a review. Neural Netw. 21(4), 642–653 (2008)

    Article  Google Scholar 

  22. Herrero-Carrón, F., Rodríguez, F.B., Varona, P.: Bio-inspired design strategies for central pattern generator control in modular robotics. Bioinspiration Biomimetics 6(1), 016006 (2011)

    Article  Google Scholar 

  23. Suzuki, S., Kano, T., Ijspeert, A.J., Ishiguro, A.: Sprawling quadruped robot driven by decentralized control with cross-coupled sensory feedback between legs and trunk. Front. Neurorobotics 14, 116 (2021)

    Article  Google Scholar 

  24. Huerta, R., Varona, P., Rabinovich, M., Abarbanel, H.: Topology selection by chaotic neurons of a pyloric central pattern generator. Biol. Cybern. 84(1), L1–L8 (2001)

    Article  Google Scholar 

  25. Komendantov, A.O., Kononenko, N.I.: Deterministic chaos in mathematical model of pacemaker activity in bursting neurons of snail. Helix Pomatia. J. Theor. Biol. 183, 219–230 (1996)

    Article  Google Scholar 

  26. Hodgkin, A.L., Huxley, A.F.: A quantitative description of membrane current and its application to conduction and excitation in nerve (1952)

    Google Scholar 

  27. Latorre, R., Rodríguez, F.B., Varona, P.: Characterization of triphasic rhythms in central pattern generators (I): interspike interval analysis. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 160–166. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46084-5_27

    Chapter  Google Scholar 

  28. Latorre, R., Rodríguez, F.B., Varona, P.: Effect of individual spiking activity on rhythm generation of central pattern generators. Neurocomputing 58–60, 535–540 (2004)

    Article  Google Scholar 

  29. Rodríguez, F.B., Latorre, R., Varona, P.: Characterization of triphasic rhythms in central pattern generators (II): burst information analysis. In: Dorronsoro, J.R. (ed.) ICANN 2002. LNCS, vol. 2415, pp. 167–173. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-46084-5_28

    Chapter  Google Scholar 

  30. Chamorro, P., Muñiz, C., Levi, R., Arroyo, D., Rodríguez, F.B., Varona, P.: Generalization of the dynamic clamp concept in neurophysiology and behavior. PLoS ONE 7(7), e40887 (2012)

    Article  Google Scholar 

  31. Amaducci, R., Reyes-Sanchez, M., Elices, I., Rodriguez, F.B., Varona, P.: RTHybrid: a standardized and open-source real-time software model library for experimental neuroscience. Front. Neuroinformatics 13, 11 (2019)

    Article  Google Scholar 

  32. Reyes-Sanchez, M., Amaducci, R., Elices, I., Rodriguez, F.B., Varona, P.: Automatic adaptation of model neurons and connections to build hybrid circuits with living networks. Neuroinformaticcs 18, 377–393 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by AEI/FEDER PGC2018-095895-B-I00.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Blanca Berbel , Alicia Garrido-peña , Irene Elices , Roberto Latorre or Pablo Varona .

Editor information

Editors and Affiliations

Appendices

A Equations of Komendantov-Kononenko (KK) Model

The equation that describes the membrane potential in this model is:

$$\begin{aligned} - C_mdV(t)/dt = I_{Na(TTX)}+I_{K(TEA)}+I_{K}+I_{Na} +I_{Na}(V)+I_{B}+I_{Ca}+I_{Ca-Ca} +I_{Syn} \end{aligned}$$
(5)

where \(C_m\) is the capacitance of the membrane and V the membrane potential in mV. \(I_{Syn}\) represents the total synaptic current, electrical or chemical, which is different for each neuron in the CPG.

The model is defined with four components describing distinct ionic currents:

  1. 1.

    A slow wave generating mechanism, given by sodium, potassium and chemosensitive currents:

    $$\begin{aligned} I_{Na}(V)=g^*_{Na}(V)(1/1+\exp {(-0.2(V(t)+45))})) (V(t)-V_{Na})); \end{aligned}$$
    (6)
    $$\begin{aligned} I_{Na}=g^*_{Na}(V(t)-V_{Na}); \end{aligned}$$
    (7)
    $$\begin{aligned} I_{K}=g^*_{K}(V(t)-V_{K}); \end{aligned}$$
    (8)
    $$\begin{aligned} I_{B}=g^*_{B}m_B(t)h_B(t)(V(t)-V_{B}); \end{aligned}$$
    (9)
    $$\begin{aligned} dm_B(t)/dt=(1/(1+\exp {(0.4(V(t)+34))})-m_B(t))/0.05; \end{aligned}$$
    (10)
    $$\begin{aligned} dh_B(t)/dt=(1/(1+\exp {(-0.55(V(t)+43))})-h_B(t))/1.5; \end{aligned}$$
    (11)

    where \(m_B(t)\) and \(h_B(t)\) are conductance variables that describe the activation and deactivation of the ionic conductance. The parameters \(g^*_{Na}(V)\), \(g^*_{Na}\), \(g^*_{K}\), \(g^*_{B}\) are the maximal conductances of these ionic channels and \(V_{Na}\), \(V_{K}\) and \(V_{B}\) are the corresponding reversal potentials. We will use the same notation for the channels described bellow.

  2. 2.

    A spike-generating mechanism, which is described by TTX-sensitive sodium and TEA-sensitive potassium Hodgkin-Huxley type currents:

    $$\begin{aligned} I_{Na(TTX)}=g^*_{Na(TTX)}m^3(t)h(t)(V(t)-V_{Na}); \end{aligned}$$
    (12)
    $$\begin{aligned} I_{K(TEA)}=g^*_{K(TEA)}n^4(t)(V(t)-V_{K}) \end{aligned}$$
    (13)
    $$\begin{aligned} dm(t)/dt=(1/(1+\exp {(-0.4(V(t)+31))})-m(t))/0.0005; \end{aligned}$$
    (14)
    $$\begin{aligned} dh(t)/dt=(1/(1+\exp {(0.25(V(t)+45))})-h(t))/0.01; \end{aligned}$$
    (15)
    $$\begin{aligned} dn(t)/dt=(1/(1+\exp {(-0.18(V(t)+25))})-n(t))/0.015; \end{aligned}$$
    (16)
  3. 3.

    A calcium transient voltage-dependent current, described by:

    $$\begin{aligned} I_{Ca}=g^*_{Ca}m^2_{Ca}(V(t)-V_{Ca}); \end{aligned}$$
    (17)
    $$\begin{aligned} dm_{Ca}(t)/dt=(1/(1+\exp {(-0.2(V(t))})-m_{Ca}(t))/0.01; \end{aligned}$$
    (18)
  4. 4.

    A calcium stationary \([Ca^{2+}]_{in}\) inhibited current given by:

    $$\begin{aligned} I_{Ca-Ca} =g^*{Ca-Ca}\frac{1}{1+\exp {(-0.06(V(t)+45))}} \frac{1}{1+\exp {(K_{\beta }([Ca](t)-\beta ))}}(V(t)-V_{Ca}); \end{aligned}$$
    (19)
    $$\begin{aligned} d[Ca](t)/dt=\rho -I_{Ca}/2F\nu -K_s[Ca](t); \end{aligned}$$
    (20)

    where \(\nu = 4\pi R^3/3\) is the volume of the cell; [Ca] is \([Ca^{2+}]_{in} \, (mM) \), F is Faraday number (\(96,485 \,\) Cmol\(^{-1}\)), \(K_s\) is the rate constant of intracellular Ca-uptake by intracellular stores and \(\rho \) is the endogenous Ca buffer capacity.

B Parameters Used in the KK Model

  • \(V_{Na} = 40\) mV; \(V_{K} = -70\) mV; \(V_{B} = -58\) mV; \(V_{Ca} = 150\) mV; \(C_{m} = 0.02\, \upmu \)F; \(R = 0.1\) mm; \(k_{s} = 50\) l/s; \( \rho = 0.002\); \(k_{\beta } = 15000\) mV; \( \beta = 0.00004\) mM;

  • Chaotic mode: \(g^*_{K} = 0.25\)  \(\upmu \)S; \(g^*_{Na} = 0.0231\)  \(\upmu \)S; \(g^*_{Na}(V) = 0.11\)  \(\upmu \)S; \(g^*_{B} = 0.1372\) \(\upmu \)S; \(g^*_{Na(TTX)} = 400\) \(\upmu \)S; \(g^*_{K(TEA)} = 10\) \(\upmu \)S; \(g^*_{Ca} = 1.5\) \(\upmu \)S; \(g^*_{Ca-Ca} = 0.02\) \(\upmu \)S;

  • Chaotic bursting mode: \(g^*_{K} = 0.25\) \(\upmu \)S; \(g^*_{Na} = 0.02\) \(\upmu \)S; \(g^*_{Na}(V) = 0.13\) \(\upmu \)S; \(g^*_{B} = 0.18\) \(\upmu \)S; \(g^*_{Na(TTX)} = 400\) \(\upmu \)S; \(g^*_{K(TEA)} = 10\) \(\upmu \)S; \(g^*_{Ca} = 1\) \(\upmu \)S; \(g^*_{Ca-Ca} = 0.01\) \(\upmu \)S;

  • Regular mode: \(g^*_{K} = 0.25\) \(\upmu \)S; \(g^*_{Na} = 0.02\) \(\upmu \)S; \(g^*_{Na}(V) = 0.13\) \(\upmu \)S; \(g^*_{B} = 0.165\) \(\upmu \)S; \(g^*_{Na(TTX)} = 400\) \(\upmu \)S; \(g^*_{K(TEA)} = 10\) \(\upmu \)S; \(g^*_{Ca} = 1\) \(\upmu \)S; \(g^*_{Ca-Ca} = 0.01\) \(\upmu \)S;

  • Initial conditions: \(V = -55\) mV; \([Ca^{2+}]_{in}= 0\);

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Berbel, B., Garrido-peña, A., Elices, I., Latorre, R., Varona, P. (2021). Effect of Electrical Synapses in the Cycle-by-Cycle Period and Burst Duration of Central Pattern Generators. In: Rojas, I., Joya, G., Català, A. (eds) Advances in Computational Intelligence. IWANN 2021. Lecture Notes in Computer Science(), vol 12862. Springer, Cham. https://doi.org/10.1007/978-3-030-85099-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85099-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85098-2

  • Online ISBN: 978-3-030-85099-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics