Skip to main content

Symbolic Simulation of Railway Timetables Under Consideration of Stochastic Dependencies

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12846))

Included in the following conference series:

Abstract

In this paper we propose an exact symbolic simulation method to compute the impact of delays in railway systems. We use macroscopic railway infrastructure models and model primary delays of trains in a timetable by discrete probability distributions. Our method is capable of computing exact probabilistic quantities like delay probability distributions and expected delays for timetable trains, or expected capacity usage of infrastructure elements within a given finite time window. In turn, these quantities allow us to examine timetable robustness and to identify problematic infrastructure elements. We evaluate our approach on realistic case studies and discuss possible further improvements.

This research is funded by the German Research Council (DFG) – Research Training Group UnRAVeL (RTG 2236).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Actually, in \(\textit{block}[x]\) we do not need all details stored in the train instances; all what we need is a unique representation of a track-blocking until a certain time point. We store the train instances here to have a unique data type for the global sets \(\textit{occupy}[x]\), \(\textit{block}[x]\) and \(\textit{req}[x]\).

  2. 2.

    In contrast to edges, arrival and departure times might be equal for vertices, i.e. the train might not want to stop at the given vertex but move on directly to the next infrastructure element. Processing vertices first allows us to implement entering the vertex first and entering the outgoing edge afterwards for the same time point.

References

  1. LUKS (2021). https://www.via-con.de/en/development/luks/. Accessed 28 Apr 2021

  2. OnTime (2021). https://www.trafit.ch/en/ontime. Accessed 28 Apr 2021

  3. OpenTrack Railway Technology (2021). http://www.opentrack.ch/opentrack/opentrack_e/opentrack_e.html. Accessed 28 Apr 2021

  4. RailSys (2021). https://www.rmcon-int.de/railsys-en/. Accessed 28 April 2021

  5. Büker, T., Seybold, B.: Stochastic modelling of delay propagation in large networks. J. Rail Transp. Plann. Manag. 2(1), 34–50 (2012). https://doi.org/10.1016/j.jrtpm.2012.10.001

  6. DB Netz AG: Fahrwegkapazität. In: Richtlinie 405 / DB Netz, Deutsche Bahn Gruppe. DB Netz, Deutsche Bahn Gruppe, [Frankfurt am Main] (2008)

    Google Scholar 

  7. Franke, B., Seybold, B., Büker, T., Graffagnino, T., Labermeier, H.: Ontime – network-wide analysis of timetable stability. In: 5th International Seminar on Railway Operations Modelling and Analysis (2013)

    Google Scholar 

  8. Haehn, R., Ábrahám, E., Nießen, N.: Probabilistic simulation of a railway timetable. In: Huisman, D., Zaroliagis, C.D. (eds.) 20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik (2020). https://doi.org/10.4230/OASIcs.ATMOS.2020.16. https://drops.dagstuhl.de/opus/volltexte/2020/13152

  9. Hensel, C., Junges, S., Katoen, J., Quatmann, T., Volk, M.: The probabilistic model checker storm. CoRR abs/2002.07080 (2020). https://arxiv.org/abs/2002.07080

  10. Janecek, D., Weymann, F.: Luks - analysis of lines and junctions. In: Proceedings of the 12th World Conference on Transport Research (WCTR 2010), Lisbon, Portugal (2010)

    Google Scholar 

  11. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  12. Nash, A., Huerlimann, D.: Railroad simulation using OpenTrack. Comput. Rail. IX, 45–54 (2004). https://doi.org/10.2495/CR040051

  13. Norris, J.R.: Markov Chains. Cambridge Series in Statistical and Probabilistic Mathematics, Cambridge University Press, Cambridge (1997). https://doi.org/10.1017/CBO9780511810633

  14. Radtke, A.: Infrastructure Modelling. Eurailpress, Hamburg (2014)

    Google Scholar 

  15. Radtke, A., Bendfeldt, J.: Handling of railway operation problems with RailSys. In: Proceedings of the 5th World Congress on Rail Research (WCRR 2001), Cologne, Germany (2001)

    Google Scholar 

  16. Schneider, W., Nießen, N., Oetting, A.: MOSES/WiZug: Strategic modelling and simulation tool for rail freight transportation. In: Proceedings of the European Transport Conference, Straßbourg (2003)

    Google Scholar 

  17. Schwanhäusser, W.: Die Bemessung der Pufferzeiten im Fahrplangefüge der Eisenbahn. Verkehrswissenschaftliches Institut Aachen: Veröffentlichungen, Verkehrswiss. Inst. d. Rhein.-Westfäl. Techn. Hochsch. (1974)

    Google Scholar 

  18. Yuan, J.: Stochastic modelling of train delays and delay propagation in stations, vol. 2006. Eburon Uitgeverij BV (2006)

    Google Scholar 

  19. Yuan, J., Medeossi, G.: Statistical analysis of Train Delays and Movements. Eurailpress, Hamburg (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca Haehn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Haehn, R., Ábrahám, E., Nießen, N. (2021). Symbolic Simulation of Railway Timetables Under Consideration of Stochastic Dependencies. In: Abate, A., Marin, A. (eds) Quantitative Evaluation of Systems. QEST 2021. Lecture Notes in Computer Science(), vol 12846. Springer, Cham. https://doi.org/10.1007/978-3-030-85172-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85172-9_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85171-2

  • Online ISBN: 978-3-030-85172-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics