Skip to main content

Tweaking the Odds in Probabilistic Timed Automata

  • Conference paper
  • First Online:
Quantitative Evaluation of Systems (QEST 2021)

Abstract

We consider probabilistic timed automata (PTA) in which probabilities can be parameters, i.e. symbolic constants. They are useful to model randomised real-time systems where exact probabilities are unknown, or where the probability values should be optimised. We prove that existing techniques to transform probabilistic timed automata into equivalent finite-state Markov decision processes (MDPs) remain correct in the parametric setting, using a systematic proof pattern. We implemented two of these parameter-preserving transformations—using digital clocks and backwards reachability—in the Modest Toolset. Using Storm ’s parameter space partitioning approach, parameter values can be efficiently synthesized in the resulting parametric MDPs. We use several case studies from the literature of varying state and parameter space sizes to experimentally evaluate the performance and scalability of this novel analysis trajectory for parametric PTA.

This work was funded by DFG RTG 2236 “UnRAVeL”, DFG grant 433044889 PASIWY, NWO grant OCENW.KLEIN.311, and NWO VENI grant 639.021.754.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Data Availability

The tools used and data generated in our experimental evaluation are archived at DOI 10.4121/14910426 [29].

Notes

  1. 1.

    Parameter regions should not be confused with the regions of clock valuations as in the classic region graph construction for a (P)TA.

  2. 2.

    Existential Theory of the Reals. ETR problems are between NP and PSPACE, and ETR-hard problems are as hard as finding the roots of a multi-variate polynomial.

References

  1. Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model. Comput. Simul. 28(1), 6:1–6:39 (2018). https://doi.org/10.1145/3158668

  2. Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)

    Article  MathSciNet  Google Scholar 

  3. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC, pp. 592–601. ACM (1993). https://doi.org/10.1145/167088.167242

  4. André, É.: What’s decidable about parametric timed automata? Int. J. Softw. Tools Technol. Transf. 21(2), 203–219 (2019). https://doi.org/10.1007/s10009-017-0467-0

    Article  Google Scholar 

  5. André, É., Arias, J., Petrucci, L., Pol, J.: Iterative bounded synthesis for efficient cycle detection in parametric timed automata. In: TACAS 2021. LNCS, vol. 12651, pp. 311–329. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2_17

    Chapter  MATH  Google Scholar 

  6. André, É., Chatain, T., Fribourg, L., Encrenaz, E.: An inverse method for parametric timed automata. Int. J. Found. Comput. Sci. 20(5), 819–836 (2009). https://doi.org/10.1142/S0129054109006905

    Article  MathSciNet  MATH  Google Scholar 

  7. André, É., Delahaye, B., Fournier, P.: Consistency in parametric interval probabilistic timed automata. J. Log. Algebraic Methods Program. 110, 100459 (2020). https://doi.org/10.1016/j.jlamp.2019.04.007

  8. André, É., Fribourg, L., Sproston, J.: An extension of the inverse method to probabilistic timed automata. Formal Methods Syst. Des. 42(2), 119–145 (2013). https://doi.org/10.1007/s10703-012-0169-x

    Article  MATH  Google Scholar 

  9. Asarin, E., Maler, O., Pnueli, A.: On discretization of delays in timed automata and digital circuits. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 470–484. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055642

    Chapter  Google Scholar 

  10. Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic systems. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 963–999. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_28

    Chapter  MATH  Google Scholar 

  11. Baier, C., Hermanns, H., Katoen, J.-P.: The 10,000 facets of MDP model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 420–451. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91908-9_21

    Chapter  Google Scholar 

  12. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  13. Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: a compositional modeling formalism for hard and softly timed systems. IEEE Trans. Software Eng. 32(10), 812–830 (2006). https://doi.org/10.1109/TSE.2006.104

    Article  Google Scholar 

  14. Brim, L., Češka, M., Dražan, S., Šafránek, D.: Exploring parameter space of stochastic biochemical systems using quantitative model checking. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 107–123. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_7

    Chapter  Google Scholar 

  15. Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: An efficient statistical model checker for nondeterminism and rare events. Int. J. Softw. Tools Technol. Transf. 22(6), 759–780 (2020). https://doi.org/10.1007/s10009-020-00563-2

    Article  Google Scholar 

  16. Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.: JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_9

    Chapter  Google Scholar 

  17. Chen, T., Han, T., Katoen, J.: Time-abstracting bisimulation for probabilistic timed automata. In: Second IEEE/IFIP International Symposium on Theoretical Aspects of Software Engineering, TASE 2008, 17–19 June, 2008, Nanjing, China, pp. 177–184. IEEE Computer Society (2008). https://doi.org/10.1109/TASE.2008.29

  18. Cheshire, S., Aboba, B., Guttman, E.: Dynamic configuration of ipv4 link-local addresses. RFC 3927, 1–33 (2005)

    Google Scholar 

  19. Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.-P., Topcu, U.: Synthesis in pMDPs: a tale of 1001 parameters. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 160–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_10

    Chapter  Google Scholar 

  20. D’Argenio, P.R., Hartmanns, A., Legay, A., Sedwards, S.: Statistical approximation of optimal schedulers for probabilistic timed automata. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 99–114. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0_7

    Chapter  Google Scholar 

  21. David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015). https://doi.org/10.1007/s10009-014-0361-y

    Article  Google Scholar 

  22. Daws, C., Kwiatkowska, M.Z., Norman, G.: Automatic verification of the IEEE 1394 root contention protocol with KRONOS and PRISM. Int. J. Softw. Tools Technol. Transf. 5(2–3), 221–236 (2004)

    Article  Google Scholar 

  23. Dombrowski, C., Junges, S., Katoen, J., Gross, J.: Model-checking assisted protocol design for ultra-reliable low-latency wireless networks. In: SRDS, pp. 307–316. IEEE Computer Society (2016)

    Google Scholar 

  24. Fruth, M.: Probabilistic model checking of contention resolution in the IEEE 802.15.4 low-rate wireless personal area network protocol. In: ISoLA, pp. 290–297. IEEE Computer Society (2006)

    Google Scholar 

  25. Gregersen, H., Jensen, H.E.: Formal Design of Reliable Real Time Systems. Master’s thesis, Department of Mathematics and Computer Science, Aalborg University (1995)

    Google Scholar 

  26. Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional modelling and analysis framework for stochastic hybrid systems. Formal Methods Syst. Des. 43(2), 191–232 (2013). https://doi.org/10.1007/s10703-012-0167-z

    Article  MATH  Google Scholar 

  27. Hartmanns, A., Hermanns, H.: A Modest approach to checking probabilistic timed automata. In: QEST, pp. 187–196. IEEE (2009)

    Google Scholar 

  28. Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_51

    Chapter  Google Scholar 

  29. Hartmanns, A., Katoen, J.P., Kohlen, B., Spel, J.: Tweaking the odds in probabilistic timed automata (artifact). 4TU.Centre for Research Data (2021). https://doi.org/10.4121/14910426

  30. Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quantitative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_20

    Chapter  Google Scholar 

  31. Hartmanns, A., Sedwards, S., D’Argenio, P.R.: Efficient simulation-based verification of probabilistic timed automata. In: WSC, pp. 1419–1430. IEEE (2017). https://doi.org/10.1109/WSC.2017.8247885

  32. Helmink, L., Sellink, M.P.A., Vaandrager, F.W.: Proof-checking a data link protocol. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp. 127–165. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58085-9_75

    Chapter  Google Scholar 

  33. Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic model checker storm. CoRR abs/2002.07080 (2020)

    Google Scholar 

  34. Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55719-9_103

    Chapter  Google Scholar 

  35. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model checking of timed automata. J. Log. Algebraic Methods Program. 52–53, 183–220 (2002). https://doi.org/10.1016/S1567-8326(02)00037-1

    Article  MathSciNet  MATH  Google Scholar 

  36. Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS, pp. 266–277. IEEE Computer Society (1991). https://doi.org/10.1109/LICS.1991.151651

  37. Jovanovic, A., Lime, D., Roux, O.H.: Integer parameter synthesis for real-time systems. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015). https://doi.org/10.1109/TSE.2014.2357445

    Article  Google Scholar 

  38. Junges, S., Katoen, J., Pérez, G.A., Winkler, T.: The complexity of reachability in parametric Markov decision processes. J. Comput. Syst. Sci. 119, 183–210 (2021)

    Article  MathSciNet  Google Scholar 

  39. Kamali, M., Katoen, J.-P.: Probabilistic model checking of AODV. In: Gribaudo, M., Jansen, D.N., Remke, A. (eds.) QEST 2020. LNCS, vol. 12289, pp. 54–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59854-9_6

    Chapter  Google Scholar 

  40. Kohlen, B.: Parameter synthesis in probabilistic timed automata. Master’s thesis, RWTH Aachen University, Aachen (2020). https://publications.rwth-aachen.de/record/811856

  41. Krause, C., Giese, H.: Model checking probabilistic real-time properties for service-oriented systems with service level agreements. INFINITY. EPTCS, vol. 73, pp. 64–78 (2011)

    Google Scholar 

  42. Kwiatkowska, M., Norman, G., Parker, D.: Stochastic games for verification of probabilistic timed automata. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 212–227. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04368-0_17

    Chapter  MATH  Google Scholar 

  43. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47

    Chapter  Google Scholar 

  44. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis of probabilistic timed automata using digital clocks. Formal Methods Syst. Des. 29(1), 33–78 (2006). https://doi.org/10.1007/s10703-006-0005-2

    Article  MATH  Google Scholar 

  45. Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. Theor. Comput. Sci. 282(1), 101–150 (2002). https://doi.org/10.1016/S0304-3975(01)00046-9

    Article  MathSciNet  MATH  Google Scholar 

  46. Kwiatkowska, M.Z., Norman, G., Sproston, J., Wang, F.: Symbolic model checking for probabilistic timed automata. Inf. Comput. 205(7), 1027–1077 (2007)

    Article  MathSciNet  Google Scholar 

  47. Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of Markov decision processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1_23

    Chapter  Google Scholar 

  48. Markowitch, O., Roggeman, Y.: Probabilistic non-repudiation without trusted third party. In: Proceedings 2nd Workshop on Security in Communication Networks (1999)

    Google Scholar 

  49. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed automata. Formal Methods Syst. Des. 43(2), 164–190 (2013)

    Article  Google Scholar 

  50. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons Inc., New York (1994)

    Book  Google Scholar 

  51. Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter synthesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_4

    Chapter  MATH  Google Scholar 

  52. Sproston, J.: Strict divergence for probabilistic timed automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 620–636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8_41

    Chapter  Google Scholar 

  53. Sproston, J.: Probabilistic timed automata with clock-dependent probabilities. Fundam. Informaticae 178(1–2), 101–138 (2021)

    Article  MathSciNet  Google Scholar 

  54. Stoelinga, M., Vaandrager, F.: Root contention in IEEE 1394. In: Katoen, J.-P. (ed.) ARTS 1999. LNCS, vol. 1601, pp. 53–74. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48778-6_4

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnd Hartmanns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hartmanns, A., Katoen, JP., Kohlen, B., Spel, J. (2021). Tweaking the Odds in Probabilistic Timed Automata. In: Abate, A., Marin, A. (eds) Quantitative Evaluation of Systems. QEST 2021. Lecture Notes in Computer Science(), vol 12846. Springer, Cham. https://doi.org/10.1007/978-3-030-85172-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85172-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85171-2

  • Online ISBN: 978-3-030-85172-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics