Abstract
We consider probabilistic timed automata (PTA) in which probabilities can be parameters, i.e. symbolic constants. They are useful to model randomised real-time systems where exact probabilities are unknown, or where the probability values should be optimised. We prove that existing techniques to transform probabilistic timed automata into equivalent finite-state Markov decision processes (MDPs) remain correct in the parametric setting, using a systematic proof pattern. We implemented two of these parameter-preserving transformations—using digital clocks and backwards reachability—in the Modest Toolset. Using Storm ’s parameter space partitioning approach, parameter values can be efficiently synthesized in the resulting parametric MDPs. We use several case studies from the literature of varying state and parameter space sizes to experimentally evaluate the performance and scalability of this novel analysis trajectory for parametric PTA.
This work was funded by DFG RTG 2236 “UnRAVeL”, DFG grant 433044889 PASIWY, NWO grant OCENW.KLEIN.311, and NWO VENI grant 639.021.754.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Data Availability
The tools used and data generated in our experimental evaluation are archived at DOI 10.4121/14910426 [29].
Notes
- 1.
Parameter regions should not be confused with the regions of clock valuations as in the classic region graph construction for a (P)TA.
- 2.
Existential Theory of the Reals. ETR problems are between NP and PSPACE, and ETR-hard problems are as hard as finding the roots of a multi-variate polynomial.
References
Agha, G., Palmskog, K.: A survey of statistical model checking. ACM Trans. Model. Comput. Simul. 28(1), 6:1–6:39 (2018). https://doi.org/10.1145/3158668
Alur, R., Dill, D.L.: A theory of timed automata. Theor. Comput. Sci. 126(2), 183–235 (1994)
Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: STOC, pp. 592–601. ACM (1993). https://doi.org/10.1145/167088.167242
André, É.: What’s decidable about parametric timed automata? Int. J. Softw. Tools Technol. Transf. 21(2), 203–219 (2019). https://doi.org/10.1007/s10009-017-0467-0
André, É., Arias, J., Petrucci, L., Pol, J.: Iterative bounded synthesis for efficient cycle detection in parametric timed automata. In: TACAS 2021. LNCS, vol. 12651, pp. 311–329. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72016-2_17
André, É., Chatain, T., Fribourg, L., Encrenaz, E.: An inverse method for parametric timed automata. Int. J. Found. Comput. Sci. 20(5), 819–836 (2009). https://doi.org/10.1142/S0129054109006905
André, É., Delahaye, B., Fournier, P.: Consistency in parametric interval probabilistic timed automata. J. Log. Algebraic Methods Program. 110, 100459 (2020). https://doi.org/10.1016/j.jlamp.2019.04.007
André, É., Fribourg, L., Sproston, J.: An extension of the inverse method to probabilistic timed automata. Formal Methods Syst. Des. 42(2), 119–145 (2013). https://doi.org/10.1007/s10703-012-0169-x
Asarin, E., Maler, O., Pnueli, A.: On discretization of delays in timed automata and digital circuits. In: Sangiorgi, D., de Simone, R. (eds.) CONCUR 1998. LNCS, vol. 1466, pp. 470–484. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0055642
Baier, C., de Alfaro, L., Forejt, V., Kwiatkowska, M.: Model checking probabilistic systems. In: Clarke, E., Henzinger, T., Veith, H., Bloem, R. (eds.) Handbook of Model Checking, pp. 963–999. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_28
Baier, C., Hermanns, H., Katoen, J.-P.: The 10,000 facets of MDP model checking. In: Steffen, B., Woeginger, G. (eds.) Computing and Software Science. LNCS, vol. 10000, pp. 420–451. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-91908-9_21
Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)
Bohnenkamp, H.C., D’Argenio, P.R., Hermanns, H., Katoen, J.P.: MoDeST: a compositional modeling formalism for hard and softly timed systems. IEEE Trans. Software Eng. 32(10), 812–830 (2006). https://doi.org/10.1109/TSE.2006.104
Brim, L., Češka, M., Dražan, S., Šafránek, D.: Exploring parameter space of stochastic biochemical systems using quantitative model checking. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 107–123. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_7
Budde, C.E., D’Argenio, P.R., Hartmanns, A., Sedwards, S.: An efficient statistical model checker for nondeterminism and rare events. Int. J. Softw. Tools Technol. Transf. 22(6), 759–780 (2020). https://doi.org/10.1007/s10009-020-00563-2
Budde, C.E., Dehnert, C., Hahn, E.M., Hartmanns, A., Junges, S., Turrini, A.: JANI: quantitative model and tool interaction. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10206, pp. 151–168. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54580-5_9
Chen, T., Han, T., Katoen, J.: Time-abstracting bisimulation for probabilistic timed automata. In: Second IEEE/IFIP International Symposium on Theoretical Aspects of Software Engineering, TASE 2008, 17–19 June, 2008, Nanjing, China, pp. 177–184. IEEE Computer Society (2008). https://doi.org/10.1109/TASE.2008.29
Cheshire, S., Aboba, B., Guttman, E.: Dynamic configuration of ipv4 link-local addresses. RFC 3927, 1–33 (2005)
Cubuktepe, M., Jansen, N., Junges, S., Katoen, J.-P., Topcu, U.: Synthesis in pMDPs: a tale of 1001 parameters. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138, pp. 160–176. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4_10
D’Argenio, P.R., Hartmanns, A., Legay, A., Sedwards, S.: Statistical approximation of optimal schedulers for probabilistic timed automata. In: Ábrahám, E., Huisman, M. (eds.) IFM 2016. LNCS, vol. 9681, pp. 99–114. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33693-0_7
David, A., Larsen, K.G., Legay, A., Mikucionis, M., Poulsen, D.B.: Uppaal SMC tutorial. Int. J. Softw. Tools Technol. Transf. 17(4), 397–415 (2015). https://doi.org/10.1007/s10009-014-0361-y
Daws, C., Kwiatkowska, M.Z., Norman, G.: Automatic verification of the IEEE 1394 root contention protocol with KRONOS and PRISM. Int. J. Softw. Tools Technol. Transf. 5(2–3), 221–236 (2004)
Dombrowski, C., Junges, S., Katoen, J., Gross, J.: Model-checking assisted protocol design for ultra-reliable low-latency wireless networks. In: SRDS, pp. 307–316. IEEE Computer Society (2016)
Fruth, M.: Probabilistic model checking of contention resolution in the IEEE 802.15.4 low-rate wireless personal area network protocol. In: ISoLA, pp. 290–297. IEEE Computer Society (2006)
Gregersen, H., Jensen, H.E.: Formal Design of Reliable Real Time Systems. Master’s thesis, Department of Mathematics and Computer Science, Aalborg University (1995)
Hahn, E.M., Hartmanns, A., Hermanns, H., Katoen, J.P.: A compositional modelling and analysis framework for stochastic hybrid systems. Formal Methods Syst. Des. 43(2), 191–232 (2013). https://doi.org/10.1007/s10703-012-0167-z
Hartmanns, A., Hermanns, H.: A Modest approach to checking probabilistic timed automata. In: QEST, pp. 187–196. IEEE (2009)
Hartmanns, A., Hermanns, H.: The Modest Toolset: an integrated environment for quantitative modelling and verification. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 593–598. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_51
Hartmanns, A., Katoen, J.P., Kohlen, B., Spel, J.: Tweaking the odds in probabilistic timed automata (artifact). 4TU.Centre for Research Data (2021). https://doi.org/10.4121/14910426
Hartmanns, A., Klauck, M., Parker, D., Quatmann, T., Ruijters, E.: The quantitative verification benchmark set. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11427, pp. 344–350. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17462-0_20
Hartmanns, A., Sedwards, S., D’Argenio, P.R.: Efficient simulation-based verification of probabilistic timed automata. In: WSC, pp. 1419–1430. IEEE (2017). https://doi.org/10.1109/WSC.2017.8247885
Helmink, L., Sellink, M.P.A., Vaandrager, F.W.: Proof-checking a data link protocol. In: Barendregt, H., Nipkow, T. (eds.) TYPES 1993. LNCS, vol. 806, pp. 127–165. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58085-9_75
Hensel, C., Junges, S., Katoen, J.P., Quatmann, T., Volk, M.: The probabilistic model checker storm. CoRR abs/2002.07080 (2020)
Henzinger, T.A., Manna, Z., Pnueli, A.: What good are digital clocks? In: Kuich, W. (ed.) ICALP 1992. LNCS, vol. 623, pp. 545–558. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-55719-9_103
Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model checking of timed automata. J. Log. Algebraic Methods Program. 52–53, 183–220 (2002). https://doi.org/10.1016/S1567-8326(02)00037-1
Jonsson, B., Larsen, K.G.: Specification and refinement of probabilistic processes. In: LICS, pp. 266–277. IEEE Computer Society (1991). https://doi.org/10.1109/LICS.1991.151651
Jovanovic, A., Lime, D., Roux, O.H.: Integer parameter synthesis for real-time systems. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015). https://doi.org/10.1109/TSE.2014.2357445
Junges, S., Katoen, J., Pérez, G.A., Winkler, T.: The complexity of reachability in parametric Markov decision processes. J. Comput. Syst. Sci. 119, 183–210 (2021)
Kamali, M., Katoen, J.-P.: Probabilistic model checking of AODV. In: Gribaudo, M., Jansen, D.N., Remke, A. (eds.) QEST 2020. LNCS, vol. 12289, pp. 54–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59854-9_6
Kohlen, B.: Parameter synthesis in probabilistic timed automata. Master’s thesis, RWTH Aachen University, Aachen (2020). https://publications.rwth-aachen.de/record/811856
Krause, C., Giese, H.: Model checking probabilistic real-time properties for service-oriented systems with service level agreements. INFINITY. EPTCS, vol. 73, pp. 64–78 (2011)
Kwiatkowska, M., Norman, G., Parker, D.: Stochastic games for verification of probabilistic timed automata. In: Ouaknine, J., Vaandrager, F.W. (eds.) FORMATS 2009. LNCS, vol. 5813, pp. 212–227. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04368-0_17
Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_47
Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis of probabilistic timed automata using digital clocks. Formal Methods Syst. Des. 29(1), 33–78 (2006). https://doi.org/10.1007/s10703-006-0005-2
Kwiatkowska, M.Z., Norman, G., Segala, R., Sproston, J.: Automatic verification of real-time systems with discrete probability distributions. Theor. Comput. Sci. 282(1), 101–150 (2002). https://doi.org/10.1016/S0304-3975(01)00046-9
Kwiatkowska, M.Z., Norman, G., Sproston, J., Wang, F.: Symbolic model checking for probabilistic timed automata. Inf. Comput. 205(7), 1027–1077 (2007)
Legay, A., Sedwards, S., Traonouez, L.-M.: Scalable verification of Markov decision processes. In: Canal, C., Idani, A. (eds.) SEFM 2014. LNCS, vol. 8938, pp. 350–362. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15201-1_23
Markowitch, O., Roggeman, Y.: Probabilistic non-repudiation without trusted third party. In: Proceedings 2nd Workshop on Security in Communication Networks (1999)
Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed automata. Formal Methods Syst. Des. 43(2), 164–190 (2013)
Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics, John Wiley & Sons Inc., New York (1994)
Quatmann, T., Dehnert, C., Jansen, N., Junges, S., Katoen, J.-P.: Parameter synthesis for Markov models: faster than ever. In: Artho, C., Legay, A., Peled, D. (eds.) ATVA 2016. LNCS, vol. 9938, pp. 50–67. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46520-3_4
Sproston, J.: Strict divergence for probabilistic timed automata. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 620–636. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04081-8_41
Sproston, J.: Probabilistic timed automata with clock-dependent probabilities. Fundam. Informaticae 178(1–2), 101–138 (2021)
Stoelinga, M., Vaandrager, F.: Root contention in IEEE 1394. In: Katoen, J.-P. (ed.) ARTS 1999. LNCS, vol. 1601, pp. 53–74. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48778-6_4
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Hartmanns, A., Katoen, JP., Kohlen, B., Spel, J. (2021). Tweaking the Odds in Probabilistic Timed Automata. In: Abate, A., Marin, A. (eds) Quantitative Evaluation of Systems. QEST 2021. Lecture Notes in Computer Science(), vol 12846. Springer, Cham. https://doi.org/10.1007/978-3-030-85172-9_3
Download citation
DOI: https://doi.org/10.1007/978-3-030-85172-9_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85171-2
Online ISBN: 978-3-030-85172-9
eBook Packages: Computer ScienceComputer Science (R0)