Skip to main content

Towards Understanding Quality-Related Characteristics in Knowledge-Intensive Processes - A Systematic Literature Review

  • Conference paper
  • First Online:
Quality of Information and Communications Technology (QUATIC 2021)

Abstract

Context: Contemporary process management systems have been supporting users during the execution of repetitive, predefined business processes. Many business processes are no longer limited to explicit business rules as processes can be unpredictable, knowledge-driven and emergent. In recent years, knowledge-intensive processes (KIPs) have become more important for many businesses. However, quality-related aspects of these processes are still scarce. Therefore, it is hard to evaluate these types of processes in terms of their quality. Objective: In this paper, we present a Systematic Literature Review aiming at investigating and reporting quality-related aspects of KIPs. Results: We identified in the selected studies the characteristics and methods related to KIPs. Although several papers present quality aspects of processes, literature still lacks directions on the quality-related approaches in KIPs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abbad Andaloussi, A., Davis, C.J., Burattin, A., López, H.A., Slaats, T., Weber, B.: Understanding quality in declarative process modeling through the mental models of experts. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 417–434. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_24

    Chapter  Google Scholar 

  2. Andrews, K., Steinau, S., Reichert, M.: Enabling ad-hoc changes to object-aware processes, pp. 85–94. Institute of Electrical and Electronics Engineers Inc. (2018)

    Google Scholar 

  3. Andrews, K., Steinau, S., Reichert, M.: Enabling runtime flexibility in data-centric and data-driven process execution engines. Inf. Syst. (2019)

    Google Scholar 

  4. Benner-Wickner, M., Brückmann, T., Gruhn, V., Book, M.: Process mining for knowledge-intensive business processes, 21–22-October-2015, pp. 1–8. Association for Computing Machinery (2015)

    Google Scholar 

  5. Bernardi, M.L., Cimitile, M., Maggi, F.M.: Automated development of constraint-driven web applications, 04–08-April-2016, pp. 1196–1203. Association for Computing Machinery (2016)

    Google Scholar 

  6. Bider, I., Jalali, A.: Limiting variety by standardizing and controlling knowledge intensive processes, 2016-September, pp. 33–41. Institute of Electrical and Electronics Engineers Inc. (2016)

    Google Scholar 

  7. Boissier, F., Rychkova, I., Le Grand, B.: Challenges in knowledge intensive process management, 2019-October, pp. 65–74. Institute of Electrical and Electronics Engineers Inc. (2019)

    Google Scholar 

  8. Botangen, K.A., Yu, J., Sheng, M.: Towards measuring the adaptability of an ao4bpel process. Association for Computing Machinery (2017)

    Google Scholar 

  9. BǍdicǍ, A., BǍdicǍ, C., Leon, F., Buligiu, I.: Modeling and enactment of business agents using Jason. 18–20-May-2016, Association for Computing Machinery (2016)

    Google Scholar 

  10. Di Ciccio, C., Marrella, A., Russo, A.: Knowledge-intensive processes: characteristics, requirements and analysis of contemporary approaches. J. Data Semant. 4, 29–57 (2015)

    Article  Google Scholar 

  11. Estrada-Torres, B.: Improve performance management in flexible business processes, vol. 2, pp. 145–149. Association for Computing Machinery (2017)

    Google Scholar 

  12. Estrada-Torres, B., et al.: Measuring performance in knowledge-intensive processes. ACM Trans. Internet Technol. 19, 1–26 (2019)

    Article  Google Scholar 

  13. Fichtner, M., Schönig, S., Jablonski, S.: Process management enhancement by using image mining techniques: a position paper, vol. 1, pp. 249–255. SciTePress (2020)

    Google Scholar 

  14. Haarmann, S.: Fragment-based case management models: metamodel, consistency, and correctness, vol. 2839, pp. 1–8. CEUR-WS (2021)

    Google Scholar 

  15. Heinrich, B., Schiller, A., Schön, D., Szubartowicz, M.: Adapting process models via an automated planning approach. J. Decis. Syst. 29, 223–259 (2020)

    Article  Google Scholar 

  16. Hildebrandt, T.T., et al.: Ecoknow: engineering effective, co-created and compliant adaptive case management systems for knowledge workers, pp. 155–164. Association for Computing Machinery Inc. (2020)

    Google Scholar 

  17. Huber, S., Schott, P., Lederer, M.: Adaptive open innovation - solution approach and tool support, 23–24-April-2015. Association for Computing Machinery (2015)

    Google Scholar 

  18. Jaanus, J., Sihver, M., Ley, T.: Managing requirements knowledge in business networks: a case study, 21–22-October-2015. Association for Computing Machinery (2015)

    Google Scholar 

  19. Kitchenham, B., Charters, S.: Guidelines for performing systematic literature reviews in software engineering (2007)

    Google Scholar 

  20. Koehler, J., Woodtly, R., Hofstetter, J.: An impact-oriented maturity model for it-based case management. Inf. Syst. 47, 278–291 (2015)

    Article  Google Scholar 

  21. Landis, J.R., Koch, G.G.: The measurement of observer agreement for categorical data. JSTOR, Biometrics (1977)

    Google Scholar 

  22. Marjanovic, O., Freeze, R.: Knowledge-intensive business process: deriving a sustainable competitive advantage through business process management and knowledge management integration. Knowl. Process Manag. 19, 180–188 (2012)

    Article  Google Scholar 

  23. Marrella, A., Mecella, M., Sardina, S.: Intelligent process adaptation in the SmartPm system. ACM Trans. Intell. Syst. Technol. 8, 11 (2017)

    Article  Google Scholar 

  24. Moyon, F., Beckers, K., Klepper, S., Lachberger, P., Bruegge, B.: Towards continuous security compliance in agile software development at scale, pp. 31–34. IEEE Computer Society (2018)

    Google Scholar 

  25. Pavlicek, J., Hronza, R., Pavlickova, P., Jelinkova, K.: The business process model quality metrics. In: Pergl, R., Lock, R., Babkin, E., Molhanec, M. (eds.) EOMAS 2017. LNBIP, vol. 298, pp. 134–148. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-68185-6_10

    Chapter  Google Scholar 

  26. Pillaerds, J., Eshuis, R.: Assessing suitability of adaptive case management, pp. 566–580. Association for Information Systems (2017)

    Google Scholar 

  27. Rapina, R., Martusa, R., Wijaya, I.N.A., Zelien, A.: The impact of a collection of tasks and activities on accounting information quality: survey in Indonesia, pp. 233–236. Association for Computing Machinery (2020)

    Google Scholar 

  28. Russo, D., Ciancarini, P., Falasconi, T., Tomasi, M.: A meta-model for information systems quality: a mixed study of the financial sector. ACM Trans. Manag. Inf. Syst. 9, 9 (2018)

    Article  Google Scholar 

  29. Sarnikar, S., Deokar, A.: Knowledge management systems for knowledge-intensive processes: design approach and an illustrative example (2010)

    Google Scholar 

  30. Sigmanek, C., Lantow, B.: The staps method: Process-Taylored introduction of knowledge management solutions, vol. 3, pp. 181–189. SciTePress (2016)

    Google Scholar 

  31. De Souza, E.F., et al.: Experience report on developing an ontology-based approach for knowledge management in software testing. Association for Computing Machinery (2020)

    Google Scholar 

  32. Vukšic, V.B., Vugec, D.S., Lovric, A.: Social business process management: Croatian IT company case study. Bus. Syst. Res. 8, 60–70 (2017)

    Article  Google Scholar 

  33. Wen, S.F.: Learning secure programming in open source software communities: a socio-technical view, pp. 25–32. Association for Computing Machinery (2018)

    Google Scholar 

  34. Wondoh, J., Grossmann, G., Stumptner, M.: Dynamic temporal constraints in business processes. Association for Computing Machinery (2017)

    Google Scholar 

  35. Wu, H., Lu, T., Wang, X., Zhang, P., Jiang, P., Xu, C.: KBCBP: a knowledge-based collaborative business process model supporting dynamic procuratorial activities and roles. In: Sun, Y., Lu, T., Yu, Z., Fan, H., Gao, L. (eds.) ChineseCSCW 2019. CCIS, vol. 1042, pp. 311–319. Springer, Singapore (2019). https://doi.org/10.1007/978-981-15-1377-0_24

    Chapter  Google Scholar 

  36. Zhang, Y., Chen, J.L.: Knowledge-learning service construction based on events, pp. 681–688. Institute of Electrical and Electronics Engineers Inc. (2016)

    Google Scholar 

  37. Zhao, X., Liu, C., Yongchareon, S., Kowalkiewicz, M., Sadiq, W.: Role-based process view derivation and composition. ACM Trans. Manag. Inf. Syst. 6, 5 (2015)

    Article  Google Scholar 

  38. Işik, Ö., Van Den Bergh, J., Mertens, W.: Knowledge intensive business processes: an exploratory study, pp. 3817–3826. IEEE Computer Society (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachel Vital Simões .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Simões, R.V., Melo, G., Brito e Abreu, F., Oliveira, T. (2021). Towards Understanding Quality-Related Characteristics in Knowledge-Intensive Processes - A Systematic Literature Review. In: Paiva, A.C.R., Cavalli, A.R., Ventura Martins, P., Pérez-Castillo, R. (eds) Quality of Information and Communications Technology. QUATIC 2021. Communications in Computer and Information Science, vol 1439. Springer, Cham. https://doi.org/10.1007/978-3-030-85347-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85347-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85346-4

  • Online ISBN: 978-3-030-85347-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics