Skip to main content

A Fine-Grained Mixed Land Use Decomposition Method Based on Multi-source Geospatial Data

  • Conference paper
  • First Online:
Spatial Data and Intelligence (SpatialDI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12753))

Included in the following conference series:

  • 659 Accesses

Abstract

The urban mixed land use strategy can improve the efficiency and value of land use, which is of great significance to the sustainable development of cities. Previous studies related to urban land use mainly focused on neighborhood, grid, or parcel scales. These spatial scales are not fine enough to cover the spatial structure information of the internal multi-functional mixture, which is difficult to meet the needs of fine urban planning and construction. To this end, this paper proposes an urban mixed land use decomposition model at the pixel scale with higher spatial resolution, combined with a spectral unmixing strategy. Firstly, this paper constructs a multi-source feature set to describe the natural and socio-economic characteristics of urban functions. Then, the Fully Constrained Least Squares (FCLS) model was used to extract the information of urban functional abundance. The results of the mixed decomposition were compared qualitatively and quantitatively with previous studies, and the overall accuracy was verified to be 0.833 and 0.763 for Kappa. Finally, Shannon Diversity Indicator (SHDI) was constructed to characterize the multifunctional mixed-use level of construction land units.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Grant, J.: Mixed use in theory and practice: Canadian experience with implementing a planning principle. J. Am. Plann. Assoc. 68, 71–84 (2002)

    Article  Google Scholar 

  2. Niu, N., et al.: Integrating multi-source big data to infer building functions. Int. J. Geogr. Inf. Sci. 31, 1871–1890 (2017)

    Google Scholar 

  3. Yao, Y., et al.: Mapping fine-scale population distributions at the building level by integrating multisource geospatial big data. Int. J. Geogr. Inf. Sci. 31, 1220–1244 (2017)

    Google Scholar 

  4. Zhang, J., Li, X., Yao, Y., Hong, Y., He, J., Jiang, Z.: The Traj2Vec model to quantify residents’ spatial trajectories and estimate the proportions of urban land-use types. Int. J. Geogr. Inf. Sci. 35, 193–211 (2020)

    Article  Google Scholar 

  5. Zhang, Y., Li, Q., Tu, W., Mai, K., Yao, Y., Chen, Y.: Functional urban land use recognition integrating multi-source geospatial data and cross-correlations. Comput. Environ. Urban Syst. 78, 101374 (2019)

    Article  Google Scholar 

  6. Liu, X., et al.: Characterizing mixed-use buildings based on multi-source big data. Int. J. Geogr. Inf. Sci. 32, 738–756 (2018)

    Google Scholar 

  7. Liang, X., Guan, Q., Clarke, K.C., Chen, G., Guo, S., Yao, Y.: Mixed-cell cellular automata: a new approach for simulating the spatio-temporal dynamics of mixed land use structures. Landsc. Urban Plan. 205, 103960 (2021)

    Article  Google Scholar 

  8. He, J., et al.: Accurate estimation of the proportion of mixed land use at the street-block level by integrating high spatial resolution images and geospatial big data. IEEE Trans. Geosci. Remote Sens. 59(8), 6357–6370 (2020)

    Article  Google Scholar 

  9. Liu, Y., et al.: Social sensing: a new approach to understanding our socioeconomic environments. Ann. Assoc. Am. Geogr. 105, 512–530 (2015)

    Article  Google Scholar 

  10. Xing, H., Meng, Y., Shi, Y.: A dynamic human activity-driven model for mixed land use evaluation using social media data. Trans. GIS 22, 1130–1151 (2018). https://doi.org/10.1111/tgis.12447

    Article  Google Scholar 

  11. Bioucas-Dias, J.M., et al.: Hyperspectral unmixing overview: geometrical, statistical, and sparse regression-based approaches. IEEE J. Select. Top. Appl. Earth Observ. Remote Sens. 5, 354–379 (2012)

    Article  Google Scholar 

  12. Gao, S., Janowicz, K., Couclelis, H.: Extracting urban functional regions from points of interest and human activities on location-based social networks. Trans. GIS 21, 446–467 (2017)

    Article  Google Scholar 

  13. Mohanaiah, P., Sathyanarayana, P., GuruKumar, L.: Image texture feature extraction using GLCM approach. Int. J. Sci. Res. Publ. 3, 1 (2013)

    Google Scholar 

  14. Xie, Z., Yan, J.: Kernel Density Estimation of traffic accidents in a network space. Comput. Environ. Urban Syst. 32, 396–406 (2008)

    Article  Google Scholar 

  15. Plaza, A., Martín, G., Plaza, J., Zortea, M., Sánchez, S.: Recent developments in endmember extraction and spectral unmixing. In: Prasad, S., Bruce, L.M., Chanussot, J. (eds.) Optical Remote Sensing: Advances in Signal Processing and Exploitation Techniques, pp. 235–267. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-14212-3_12

    Chapter  Google Scholar 

Download references

Acknowledgement

This work is supported by The National Natural Science Foundation of China (No. 41901332).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, C., Liang, X., Yang, Z., Guan, Q. (2021). A Fine-Grained Mixed Land Use Decomposition Method Based on Multi-source Geospatial Data. In: Pan, G., et al. Spatial Data and Intelligence. SpatialDI 2021. Lecture Notes in Computer Science(), vol 12753. Springer, Cham. https://doi.org/10.1007/978-3-030-85462-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85462-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85461-4

  • Online ISBN: 978-3-030-85462-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics