Skip to main content

A Real-Time Method for Detecting Temporary Process Variants in Event Log Data

  • Conference paper
  • First Online:
Business Process Management (BPM 2021)

Abstract

During the execution of a business process, organizations or individual employees may introduce mistakes, as well as temporary or permanent changes to the process. Such mistakes and changes in the process can introduce anomalies and deviations in the event logs, which in turn introduce temporary and periodic process variants. Early identification of such deviations from the most common types of cases can help an organization to act on them. Keeping this problem in focus, we developed a method that can discover temporary and periodic changes to processes in event log data in real-time. The method classifies cases into common, periodic, temporary, and anomalous cases. The proposed method is evaluated using synthetic and real-world data with promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armentano, M.G., Amandi, A.A.: Detection of sequences with anomalous behavior in a workflow process. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9261, pp. 111–118. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22849-5_8

    Chapter  Google Scholar 

  2. Bezerra, F., et al: Anomaly detection algorithms in business process logs. In: 10th International Conference on Enterprise Information Systems (2008)

    Google Scholar 

  3. Bezerra, F., Wainer, J., van der Aalst, W.M.P.: Anomaly detection using process mining. In: Halpin, T., et al. (eds.) BPMDS/EMMSAD -2009. LNBIP, vol. 29, pp. 149–161. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01862-6_13

    Chapter  Google Scholar 

  4. Bezerra, F.L., et al.: A dynamic threshold algorithm for anomaly detection in logs of process aware systems (2012)

    Google Scholar 

  5. Bezerra, F., et al.: Algorithms for anomaly detection of traces in logs of process aware information systems. Inf. Syst. 38(1), 33–44 (2013)

    Article  Google Scholar 

  6. Böhmer, K., Rinderle-Ma, S.: Multi-perspective anomaly detection in business process execution events. In: Debruyne, C., et al. (eds.) OTM 2016. LNCS, vol. 10033, pp. 80–98. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48472-3_5

    Chapter  Google Scholar 

  7. Böhmer, K., et al.: Anomaly detection in business process runtime behavior-challenges and limitations. arXiv:1705.06659 (2017)

  8. Böhmer, K., Rinderle-Ma, S.: Association rules for anomaly detection and root cause analysis in process executions. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 3–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_1

  9. Bouarfa, L., et al.: Workflow mining and outlier detection from clinical activity D logs. J. Biomed. Inf. 45(6), 1185–1190 (2012)

    Article  Google Scholar 

  10. Burattin, A.: Plg2: multiperspective processes randomization and simulation for online and offline settings. arXiv preprint arXiv:1506.08415 (2015)

  11. Chuang, Y.-C., Hsu, P.Y., Wang, M.T., Chen, S.-C.: A frequency-based algorithm for workflow outlier mining. In: Kim, T., Lee, Y., Kang, B.-H., Ślęzak, D. (eds.) FGIT 2010. LNCS, vol. 6485, pp. 191–207. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17569-5_21

    Chapter  Google Scholar 

  12. Conforti, R., et al.: Filtering out infrequent behavior from business process event logs. IEEE Trans. Knowl. Data Eng. 29(2), 300–314 (2016)

    Article  Google Scholar 

  13. Dijkman, R., et al.: Linguistic summarization of event logs-a practical approach. Inf. Syst. 67, 114–125 (2017)

    Article  Google Scholar 

  14. Dolev, S., et al.: Relationship of jaccard and edit distance in malware clustering and online identification. In: 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA), pp. 1–5. IEEE (2017)

    Google Scholar 

  15. van Dongen, B.B.: Bpi challenge 2015 (May 2015). https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1, https://data.4tu.nl/collections/BPI_Challenge_2015/5065424/1

  16. van Dongen, B.: Bpi challenge 2012 (April 2012). https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f, https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204/1

  17. Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)

    Article  MathSciNet  Google Scholar 

  18. Gupta, N., Anand, K., Sureka, A.: Pariket: mining business process logs for root cause analysis of anomalous incidents. In: Chu, W., Kikuchi, S., Bhalla, S. (eds.) DNIS 2015. LNCS, vol. 8999, pp. 244–263. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16313-0_19

    Chapter  Google Scholar 

  19. Han, H., et al.: Abnormal process instances identification method in healthcare environment. In: International Conference on Trust, Security and Privacy in Computing and Communications, pp. 1387–1392. IEEE (2011)

    Google Scholar 

  20. Hathaway, R.J., et al.: Nerf c-means: Non-euclidean relational fuzzy clustering. Pattern Recogn. 27(3), 429–437 (1994)

    Article  Google Scholar 

  21. Hsu, P.Y., et al.: Using contextualized activity-level duration to discover irregular process instances in business operations. Inf. Sci. 391, 80–98 (2017)

    Article  Google Scholar 

  22. Huang, Y., et al.: Filtering out infrequent events by expectation from business process event logs. In: 2018 14th International Conference on CIS, pp. 374–377. IEEE (2018)

    Google Scholar 

  23. Kendall, M.: Rank correlation methods (1948)

    Google Scholar 

  24. Linn, C., Werth, D.: Sequential anomaly detection techniques in business processes. In: Abramowicz, W., Alt, R., Franczyk, B. (eds.) BIS 2016. LNBIP, vol. 263, pp. 196–208. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52464-1_18

    Chapter  Google Scholar 

  25. Maggi, F.M., Burattin, A., Cimitile, M., Sperduti, A.: Online process discovery to detect concept drifts in LTL-based declarative process models. In: Meersman, R., et al. (eds.) OTM 2013. LNCS, vol. 8185, pp. 94–111. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41030-7_7

    Chapter  Google Scholar 

  26. Mardani, S., et al.: Fraud detection in process aware information systems using mapreduce. In: 2014 6th Conference on Information and Knowledge Technology (IKT), pp. 88–91. IEEE (2014)

    Google Scholar 

  27. Măruşter, et al.: A rule-based approach for process discovery: dealing with noise and imbalance in process logs. Data Min. Knowl. Disc. 13(1), 67–87 (2006)

    Article  MathSciNet  Google Scholar 

  28. Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc. 9(4), 541–544 (1958)

    Article  MathSciNet  Google Scholar 

  29. Nolle, T., et al.: Binet: Multi-perspective business process anomaly classification. Inf. Syst. (2019). https://doi.org/10.1016/j.is.2019.101458

  30. Park, C.G., et al.: Temporal outlier detection and correlation analysis of business process executions. IEICE Trans. Inf. Syst. 102(7), 1412–1416 (2019)

    Article  Google Scholar 

  31. Pauwels, S., et al.: An anomaly detection technique for business processes based on extended dynamic bayesian networks. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, pp. 494–501 (2019)

    Google Scholar 

  32. Petri, C.: Kommunikation mit automaten (phd thesis). Institut für Instrumentelle Mathematik, Bonn, Germany (1962)

    Google Scholar 

  33. Popescu, M., et al.: Correlation cluster validity. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics, pp. 2531–2536 (2011)

    Google Scholar 

  34. Rogge-Solti, A., Kasneci, G.: Temporal anomaly detection in business processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 234–249. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9_15

    Chapter  Google Scholar 

  35. Sarno, R., et al.: Business process anomaly detection using ontology-based process modelling and multi-level class association rule learning. In: 2015 International Conference on Computer, Control, Informatics and its Applications (IC3INA), pp. 12–17. IEEE (2015)

    Google Scholar 

  36. Sledge, I.J., et al.: Relational generalizations of cluster validity indices. IEEE Trans. Fuzzy Syst. 18(4), 771–786 (2010)

    Article  Google Scholar 

  37. Steeman, W.: Bpi challenge 2013, closed problems (April 2013). https://doi.org/10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11, https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_closed_problems/12714476/1

  38. Steeman, W.: Bpi challenge 2013, incidents (April 2013). https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee, https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_incidents/12693914/1

  39. Steeman, W.: Bpi challenge 2013, open problems (April 2013). https://doi.org/10.4121/uuid:3537c19d-6c64-4b1d-815d-915ab0e479da, https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_open_problems/12688556/1

  40. Sureka, A.: Kernel based sequential data anomaly detection in business process event logs. arXiv preprint arXiv:1507.01168 (2015)

  41. Tavares, G.M., et al.: Anomaly detection in business process based on data stream mining. In: Brazilian Symposium on Information Systems, pp. 1–8 (2018)

    Google Scholar 

  42. Der Aalst, V., et al.: Workflow mining: a survey of issues and approaches. Data Knowl. Eng. 47(2), 237–267 (2003)

    Article  Google Scholar 

  43. Der Aalst, V., et al.: Business process mining: an industrial application. Inf. Syst. 32(5), 713–732 (2007)

    Article  Google Scholar 

  44. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Online discovery of cooperative structures in business processes. In: Debruyne, C., et al. (eds.) OTM 2016. LNCS, vol. 10033, pp. 210–228. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48472-3_12

    Chapter  Google Scholar 

  45. van Zelst, S.J., Bolt, A., Hassani, M., van Dongen, B.F., van der Aalst, W.M.P.: Online conformance checking: relating event streams to process models using prefix-alignments. Int. J. Data Sci. Anal. 8(3), 269–284 (2017). https://doi.org/10.1007/s41060-017-0078-6

    Article  Google Scholar 

  46. Wang, W., et al.: On fuzzy cluster validity indices. Fuzzy Sets Syst. 158(19), 2095–2117 (2007)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhanshu Chouhan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chouhan, S., Wilbik, A., Dijkman, R. (2021). A Real-Time Method for Detecting Temporary Process Variants in Event Log Data. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds) Business Process Management. BPM 2021. Lecture Notes in Computer Science(), vol 12875. Springer, Cham. https://doi.org/10.1007/978-3-030-85469-0_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85469-0_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85468-3

  • Online ISBN: 978-3-030-85469-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics