Abstract
During the execution of a business process, organizations or individual employees may introduce mistakes, as well as temporary or permanent changes to the process. Such mistakes and changes in the process can introduce anomalies and deviations in the event logs, which in turn introduce temporary and periodic process variants. Early identification of such deviations from the most common types of cases can help an organization to act on them. Keeping this problem in focus, we developed a method that can discover temporary and periodic changes to processes in event log data in real-time. The method classifies cases into common, periodic, temporary, and anomalous cases. The proposed method is evaluated using synthetic and real-world data with promising results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Armentano, M.G., Amandi, A.A.: Detection of sequences with anomalous behavior in a workflow process. In: Chen, Q., Hameurlain, A., Toumani, F., Wagner, R., Decker, H. (eds.) DEXA 2015. LNCS, vol. 9261, pp. 111–118. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22849-5_8
Bezerra, F., et al: Anomaly detection algorithms in business process logs. In: 10th International Conference on Enterprise Information Systems (2008)
Bezerra, F., Wainer, J., van der Aalst, W.M.P.: Anomaly detection using process mining. In: Halpin, T., et al. (eds.) BPMDS/EMMSAD -2009. LNBIP, vol. 29, pp. 149–161. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01862-6_13
Bezerra, F.L., et al.: A dynamic threshold algorithm for anomaly detection in logs of process aware systems (2012)
Bezerra, F., et al.: Algorithms for anomaly detection of traces in logs of process aware information systems. Inf. Syst. 38(1), 33–44 (2013)
Böhmer, K., Rinderle-Ma, S.: Multi-perspective anomaly detection in business process execution events. In: Debruyne, C., et al. (eds.) OTM 2016. LNCS, vol. 10033, pp. 80–98. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48472-3_5
Böhmer, K., et al.: Anomaly detection in business process runtime behavior-challenges and limitations. arXiv:1705.06659 (2017)
Böhmer, K., Rinderle-Ma, S.: Association rules for anomaly detection and root cause analysis in process executions. In: Krogstie, J., Reijers, H.A. (eds.) CAiSE 2018. LNCS, vol. 10816, pp. 3–18. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91563-0_1
Bouarfa, L., et al.: Workflow mining and outlier detection from clinical activity D logs. J. Biomed. Inf. 45(6), 1185–1190 (2012)
Burattin, A.: Plg2: multiperspective processes randomization and simulation for online and offline settings. arXiv preprint arXiv:1506.08415 (2015)
Chuang, Y.-C., Hsu, P.Y., Wang, M.T., Chen, S.-C.: A frequency-based algorithm for workflow outlier mining. In: Kim, T., Lee, Y., Kang, B.-H., Ślęzak, D. (eds.) FGIT 2010. LNCS, vol. 6485, pp. 191–207. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17569-5_21
Conforti, R., et al.: Filtering out infrequent behavior from business process event logs. IEEE Trans. Knowl. Data Eng. 29(2), 300–314 (2016)
Dijkman, R., et al.: Linguistic summarization of event logs-a practical approach. Inf. Syst. 67, 114–125 (2017)
Dolev, S., et al.: Relationship of jaccard and edit distance in malware clustering and online identification. In: 2017 IEEE 16th International Symposium on Network Computing and Applications (NCA), pp. 1–5. IEEE (2017)
van Dongen, B.B.: Bpi challenge 2015 (May 2015). https://doi.org/10.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1, https://data.4tu.nl/collections/BPI_Challenge_2015/5065424/1
van Dongen, B.: Bpi challenge 2012 (April 2012). https://doi.org/10.4121/uuid:3926db30-f712-4394-aebc-75976070e91f, https://data.4tu.nl/articles/dataset/BPI_Challenge_2012/12689204/1
Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)
Gupta, N., Anand, K., Sureka, A.: Pariket: mining business process logs for root cause analysis of anomalous incidents. In: Chu, W., Kikuchi, S., Bhalla, S. (eds.) DNIS 2015. LNCS, vol. 8999, pp. 244–263. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16313-0_19
Han, H., et al.: Abnormal process instances identification method in healthcare environment. In: International Conference on Trust, Security and Privacy in Computing and Communications, pp. 1387–1392. IEEE (2011)
Hathaway, R.J., et al.: Nerf c-means: Non-euclidean relational fuzzy clustering. Pattern Recogn. 27(3), 429–437 (1994)
Hsu, P.Y., et al.: Using contextualized activity-level duration to discover irregular process instances in business operations. Inf. Sci. 391, 80–98 (2017)
Huang, Y., et al.: Filtering out infrequent events by expectation from business process event logs. In: 2018 14th International Conference on CIS, pp. 374–377. IEEE (2018)
Kendall, M.: Rank correlation methods (1948)
Linn, C., Werth, D.: Sequential anomaly detection techniques in business processes. In: Abramowicz, W., Alt, R., Franczyk, B. (eds.) BIS 2016. LNBIP, vol. 263, pp. 196–208. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52464-1_18
Maggi, F.M., Burattin, A., Cimitile, M., Sperduti, A.: Online process discovery to detect concept drifts in LTL-based declarative process models. In: Meersman, R., et al. (eds.) OTM 2013. LNCS, vol. 8185, pp. 94–111. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41030-7_7
Mardani, S., et al.: Fraud detection in process aware information systems using mapreduce. In: 2014 6th Conference on Information and Knowledge Technology (IKT), pp. 88–91. IEEE (2014)
Măruşter, et al.: A rule-based approach for process discovery: dealing with noise and imbalance in process logs. Data Min. Knowl. Disc. 13(1), 67–87 (2006)
Nerode, A.: Linear automaton transformations. Proc. Am. Math. Soc. 9(4), 541–544 (1958)
Nolle, T., et al.: Binet: Multi-perspective business process anomaly classification. Inf. Syst. (2019). https://doi.org/10.1016/j.is.2019.101458
Park, C.G., et al.: Temporal outlier detection and correlation analysis of business process executions. IEICE Trans. Inf. Syst. 102(7), 1412–1416 (2019)
Pauwels, S., et al.: An anomaly detection technique for business processes based on extended dynamic bayesian networks. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, pp. 494–501 (2019)
Petri, C.: Kommunikation mit automaten (phd thesis). Institut für Instrumentelle Mathematik, Bonn, Germany (1962)
Popescu, M., et al.: Correlation cluster validity. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics, pp. 2531–2536 (2011)
Rogge-Solti, A., Kasneci, G.: Temporal anomaly detection in business processes. In: Sadiq, S., Soffer, P., Völzer, H. (eds.) BPM 2014. LNCS, vol. 8659, pp. 234–249. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10172-9_15
Sarno, R., et al.: Business process anomaly detection using ontology-based process modelling and multi-level class association rule learning. In: 2015 International Conference on Computer, Control, Informatics and its Applications (IC3INA), pp. 12–17. IEEE (2015)
Sledge, I.J., et al.: Relational generalizations of cluster validity indices. IEEE Trans. Fuzzy Syst. 18(4), 771–786 (2010)
Steeman, W.: Bpi challenge 2013, closed problems (April 2013). https://doi.org/10.4121/uuid:c2c3b154-ab26-4b31-a0e8-8f2350ddac11, https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_closed_problems/12714476/1
Steeman, W.: Bpi challenge 2013, incidents (April 2013). https://doi.org/10.4121/uuid:500573e6-accc-4b0c-9576-aa5468b10cee, https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_incidents/12693914/1
Steeman, W.: Bpi challenge 2013, open problems (April 2013). https://doi.org/10.4121/uuid:3537c19d-6c64-4b1d-815d-915ab0e479da, https://data.4tu.nl/articles/dataset/BPI_Challenge_2013_open_problems/12688556/1
Sureka, A.: Kernel based sequential data anomaly detection in business process event logs. arXiv preprint arXiv:1507.01168 (2015)
Tavares, G.M., et al.: Anomaly detection in business process based on data stream mining. In: Brazilian Symposium on Information Systems, pp. 1–8 (2018)
Der Aalst, V., et al.: Workflow mining: a survey of issues and approaches. Data Knowl. Eng. 47(2), 237–267 (2003)
Der Aalst, V., et al.: Business process mining: an industrial application. Inf. Syst. 32(5), 713–732 (2007)
van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Online discovery of cooperative structures in business processes. In: Debruyne, C., et al. (eds.) OTM 2016. LNCS, vol. 10033, pp. 210–228. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48472-3_12
van Zelst, S.J., Bolt, A., Hassani, M., van Dongen, B.F., van der Aalst, W.M.P.: Online conformance checking: relating event streams to process models using prefix-alignments. Int. J. Data Sci. Anal. 8(3), 269–284 (2017). https://doi.org/10.1007/s41060-017-0078-6
Wang, W., et al.: On fuzzy cluster validity indices. Fuzzy Sets Syst. 158(19), 2095–2117 (2007)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Chouhan, S., Wilbik, A., Dijkman, R. (2021). A Real-Time Method for Detecting Temporary Process Variants in Event Log Data. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds) Business Process Management. BPM 2021. Lecture Notes in Computer Science(), vol 12875. Springer, Cham. https://doi.org/10.1007/978-3-030-85469-0_14
Download citation
DOI: https://doi.org/10.1007/978-3-030-85469-0_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85468-3
Online ISBN: 978-3-030-85469-0
eBook Packages: Computer ScienceComputer Science (R0)