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Abstract. Business processes are bound to evolve as a form of adaption
to changes, and such changes are referred as process drifts. Current pro-
cess drift detection methods perform well on clean event log data, but the
performance can be tremendously affected by noise. A good process drift
detection method should be accurate, fast, and robust to noise. In this
paper, we propose an offline process drift detection method which identi-
fies each newly observed behaviour as a candidate drift point and checks
if the new behaviour can signify significant changes to the original pro-
cess behaviours. In addition, a bidirectional search method is proposed
to accurately locate both the adding and removing of behaviours. The
proposed method can accurately detect drift points from event logs and
is robust to noise. Both artificial and real-life event logs are used to eval-
uate our method. Results show that our method can consistently report
accurate process drift time while maintaining a reasonably fast detection
speed.

Keywords: Process science · Data science · Process mining · Concept
drift detection

1 Introduction

Business processes are continuously evolving in order to adapt to changes. Changes
are often responses to different factors which can be planned or unexpected. For
example, a planned change can be caused by the introduction of a new regulation,
and an unexpected change can be caused by an emergency (eg. the COVID-19
outbreak). In the field of process science, such changes are called process drifts.

It has been argued that assuming a process model to be stable is unrealis-
tic [1]. It is important for us to detect process drifts as accurately as possible. On
the one hand, unexpected changes can cause losses to organizations. Detecting
such drifts can help us make appropriate responses to changes. On the other
hand, most current algorithms to discover process models assume the process to
be in a steady-state and ignore process drifts [3]. Detecting and understanding
process drifts can help us to understand the evolving nature of processes.

Statistically, a process drift point is a time point when there is a significant
difference among the process behaviours before and after the drift point [5, 11,
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22]. Various process drift detection methods have been proposed in the last
decade [1, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 22]. However, many of
these methods assume the input event log data to be clean, and their abilities to
handle noise can vary. In [3], noise is defined as ”the event log contains rare and
infrequent behaviours not representative the typical behaviour of the process”.
Such behaviours are infrequent and cannot cause a significant change to the
process behaviours. For example, if an activity is skipped only once in one process
execution record, it is more likely to be an infrequent behaviour instead of a
process change. However, noise is known to have big impacts on process drift
detection accuracy.

In this paper, we consider a process drift as either the adding or removing
of behaviours which can signify significant changes to the behaviours of the
original process. We focus on offline process drift detection from the control-flow
perspective. We propose an event-stream based process drift detection method
which is accurate, robust to noise and reasonably fast. When a new behaviour
is observed in the event log, we treat it as a candidate drift point and verify if
it can signify significant changes to the current process through statistical tests.
Both artificial and real-life event logs are used to evaluate the method.

The rest of this paper is structured as follows: Section 2 is a literature review
of related work. Section 3 introduces formal definitions of some terms. Section 4
introduces the proposed method. The evaluation results are presented in Section
5 and Section 6. We finally conclude the paper in Section 7.

2 Background

2.1 Detecting Process Drifts by Statistical Tests

A general approach to detect process drifts is to use a sliding window to obtain
two consecutive samples in the event log, naming as reference and detection
windows. The two windows are then moving through the event log trace by
trace or event by event. Then samples within each window are transformed
into a set of features, and if statistical hypothesis tests show that there is a
significant difference before/after a certain time point among these features, a
drift is reported.

Early approaches such as [1, 19] extract features to represent each sample of
the event log. Then statistical hypothesis tests are applied to detect process drifts
among feature vectors. Based on [1], [7] applies adaptive window approaches to
automatically adjust window sizes. Those methods require users to select features
to be used, which require background knowledge about the drifts in input event
logs.

The ProDrift run-based method [5, 22] transforms each trace into a partial-
order run which is a graph representation of a trace eliminating the order be-
tween parallel events. Then chi-square tests are applied to detect if there are
any significant changes among the distribution of partial-order runs between
two consecutive windows. The method is fully automated with the capability to
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categorize certain drift types. In addition, [5, 22] also aim at eliminating the im-
pact of noise by performing a number of consecutive tests. However, since each
trace is only counted once in each window, the samples used for statistical tests
are relatively small, returning unreliable results especially when input logs have
high variability (eg. when the event log contains noise). The ProDrift event-
based method [11] improves [22] by treating event logs as event streams and
using the count of alpha+ relations1 as features for statistical tests. On the one
hand, process drifts during the execution of traces can be detected. On the other
hand, since the number of alpha+ relations is much larger than traces in each
window, the statistical tests in [11] are more reliable. In addition, the ProDrift
event-based method [11] can also filter out infrequent behaviours and can work
both in online and offline settings. It is also the basis of the new approach to
characterize process drifts in [15]. The ProDrift event-based method [11] requires
parameters such as noise filtering thresholds from users.

When using statistical tests to detect process drifts in event logs, the dis-
tances between the actual process drift points and the reported drift points are
relatively longer, resulting in lower detection accuracy.

2.2 Other Process Drift Detection Methods

To improve detection accuracy, the TPCDD method [4] and the LCDD method [14]
are proposed. Both methods can achieve high accuracy. The TPCDD method [4]
firstly transforms the whole event log into a relation matrix, and whenever a
new behaviour is detected or an existing behaviour is removed, if it lasts for a
certain period, a new drift point is reported. The LCDD method [14] firstly finds
a time window where the sub-log within the window is locally complete. Then
whenever a new behaviour is observed or an existing behaviour is removed, a
drift point is reported. Although these two methods can return highly accurate
results on artificial logs, they are very sensitive to noise.

Other methods are also proposed to detect process drift points. [18] detects
process drifts based on the change of distances between each pair of activities.
Loops and parallel behaviours are ignored, resulting in possible failures. [17]
abstracts initial traces into a polyhedron and checks if subsequent traces are
within the polyhedron, a drift is detected if a trace is outside the polyhedron. [17]
is the first concept drift detection method which can be used in online settings,
but it suffers from long execution time.

Instead of focusing on detection accuracy, some methods focus more on un-
derstanding how the process model evolved over time. [6] mines process models
for different time periods and compares graph matrices of different models. [8, 13]
mine models for the first period of time and perform conformance check on each
new trace. A drift point is reported if there is a significant change on the confor-
mance checking results. [16] applies Declare miners to represent the process, and

1 Alpha+ relations define a set of relations between activities which are conflict, con-
currency, causality, length-one loop and length-two loop. For their formal definitions,
please refer to [20].
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a comprehensive visualisation is provided to understand process drifts. These
methods provide comprehensive analyses of process drifts, but usually suffer
from relatively longer execution time and lower accuracy.

Some methods also focus on process drifts from other perspectives other than
the control-flow perspective. For example, [9] detects process drifts from the data
value perspective (eg. the change of activity attribute values), [10] applies the
earth mover’s distance to detect time and control-flow drifts together (eg. the
change of activity execution time).

In summary, existing methods which are highly accurate are sensitive to
noise in event logs. Methods which are capable of handling noise could improve
their accuracy. A new method which requires fewer user-inputs and can produce
highly accurate results while properly handling noise is needed in this field.

3 Preliminaries

Definition 1 (Process drift point [5, 11, 22]). A process drift point is a
time point when there is a statistically significant difference among the observed
process behaviours before and after the time point.

Definition 2 (Event log, Trace, Activity, Event). An event log L is a mul-
tiset of traces where each trace ti is a sequence of events in a set E, i.e. E =
{e1, e2, ......, en}, and each event corresponds to a single activity A.

Definition 3 (Directly-follows relation). Let L be an event log of a process
model N, let A, B be two activities in L. Then there is a directly-follows relation
from A to B, denoted as A >L B, if there exists a trace t ∈ L where t =<
......, A,B, ...... >.

4 Concept Drift Detection

Fig.1 shows an overview of our proposed method. Our method firstly converts
the input event log into a stream of events where events are indexed and or-
dered by their timestamps. Then a reference window is built and continuously
moves through the event stream. A sub-log is built including all events within
the reference window. Each time the reference window moves, the sub-log is up-
dated and the event immediately follows the reference window is peeked. If the
peeked event brings a new behaviour which cannot be observed in the sub-log
corresponding to the reference window, we treat it as a candidate drift point
and check if the new behaviour can signify a significant difference to the original
behaviours of the process through statistical tests. If so, a drift point is reported.

4.1 Selection of Features

The first step of designing a process drift detection method is to find a feature
which can represent the behaviours of the process, and changes of such fea-
tures should reflect changes in process control-flow structures. As the proposed



Robust and Accurate Process Drift Detection 5

Stream 
of events New behaviours observed

i i + WindowSize i i + 2* WindowSize - 1

Reference window
New Event

Reference window Detection window

Bidirectional search

Significant difference found 
caused by the new behaviour

Report drift point

Consecutive statistical tests

< A, B, C >
< A, C >

D C >𝐿𝐿 D

Fig. 1. Overview of the proposed method

method relies on a single event to determine possible process drifts, we decide
to use directly-follows relations as features to represent process behaviours for
two reasons: 1) Most current process discovery algorithms are based on directly-
follows relations [3], changes in process control-flow structures are highly likely
to result in changes of directly-follows relations. 2) By peeking one event after
the reference window, a directly-follows relation could be obtained. It is worth
mentioning that alpha+ relations used by [11] are not suitable for our method
as an alpha+ relation cannot be determined by a single peeked event.

4.2 Validation of Candidate Drift Points

Observing a new directly-follows relation means a possible process drift is de-
tected. However, it could also be noise inside the event log. Whenever a new
directly-follows relation is observed, we treat it as a candidate drift point. Sta-
tistically, a process drift point should be treated as a time point t, and there is
a significant difference between process behaviours before and after t [5, 11, 22].
Although noise can bring new observed directly-follows relations in event logs,
significant changes to the process behaviours will not be signified.

To confirm if a candidate drift point is an actual drift point, statistical tests
are applied to check if a significant difference is caused. Firstly, a detection
window is built after the reference window, and a contingency matrix is built
to report the frequencies of each type of directly-follows relations in both the
reference and detection windows. Then the G-test of independence2[23] is applied
and a P-value is returned. If the P-value is less than a certain threshold, which
is typically 0.05, we conclude there is a significant difference between process
behaviours before and after the candidate drift point.

If the G-test of independence shows there is a significant difference between
process behaviours before and after a candidate drift point, it is likely to be an
actual drift point. However, if the candidate drift point is close to an actual drift
point, the low P-value could be caused by other directly-follows relations instead
of the new observed one.

To check if the new observed directly-follows relation contributes to the low
P-value, the adjusted standardized residual (ASR) of the new directly-follows

2 the G-test of independence is a non-parametric statistical hypothesis test.
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relation in the detection window is calculated. If ASR > 1.96, we conclude the
number of the new observed directly-follows relation is significantly larger and
is an influential point to the test score. For details about this, we refer to [21].

Similar to previous studies such as [5, 11, 22], a number of consecutive sta-
tistical tests are performed before a conclusion can be made to avoid sporadic
stochastic oscillations. For details, please refer to Algorithm 1, lines 9 -20.

4.3 Bidirectional Searches

A change in process models can cause both the adding and removing of directly-
follows relations. Detecting an added directly-follows relation can be simply done
by checking if the newly observed directly-follows relation exists in the reference
window. However, the removing of directly-follows relations cannot be detected
by peeking one event immediately after the reference window. A possible solution
is to build a detection window immediately after the reference window and checks
if any directly-follows relations are removed. Such a method can affect detection
accuracy. Fig.2 shows an example process drift. Suppose model 1 is shifted into
model 2 at time t. E >L F and C >L D will no longer be observed after t.
However, suppose the last appearance of E >L F is at t1 which is earlier than t,
t1 could be treated as the drift point by mistake, reducing the detection accuracy.

To solve the problem, we perform both forward and backward searches on
the event stream to detect process drifts. When performing backward searches,
the removing of directly-follows relations is shown as the adding of directly-
follows relations. There are two advantages of performing bidirectional searches:
1) When a process drift causes both adding and removing of directly-follows
relations, if the drift is missed by one search, there is one more chance for it to
be detected in another search. 2) the accuracy of detection can be improved.

It is worth mentioning that performing bidirectional searches will not double
the amount of time required to detect process drifts. Each time a G-test is per-
formed, its resulting P-value will be stored and if another G-test is required at
the same position, the P-value can be retrieved within constant time. Further-
more, each time when a G-test is performed, the ASR of each directly-follows
relation can also be computed and stored. As a result, no duplicate statistical
tests will be performed. We show that our algorithm is efficient to detect process
drifts in Section 5 and Section 6.

A B 

C D 

E F 

A B 

Fig. 2. An example process drift from model 1 (left) to model 2 (right)
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4.4 The Framework of the Proposed Method

Finally, we present the forward detection method in Algorithm 1. Since the same
approach applies to the backward detection but in a reverse direction, we do not
present it separately. Lines 1 - 8 build a reference window, peek the next event
and see if a new directly-follows relation is found (Section 4.1). Whenever a
new directly-follows relation is observed, the new event is treated as a candidate
process drift point. Lines 9 - 25 perform statistical tests to confirm if a candidate
process drift point is an actual drift point (Section 4.2).

When a noise is close to the real process drift point A challenge to the
proposed method is when a new directly-follows relation is observed which is
noise but is close to the actual process drift point. Although the problem can
be solved by calculating ASRs, it fails to solve the case when the noisy directly-
follows relation is the same as one of the added directly-follows relations after
the actual drift point. For example, suppose directly-follows relations A >L B
and C >L D are added to the process after a process drift at time t, if a noisy
directly-follows relation A >L B is observed at time t0 which is earlier than
t, t0 could be treated as a drift point by mistake. To overcome this issue, two
measures are taken: 1) When performing a number of consecutive tests, we not
only move the windows forward but also move the windows backward (Algorithm
1, lines 9 - 20). 2) By moving the window backward, the noisy A >L B could be
differentiated. However, since it is close to the real process drift point, having
A >L B in the reference window can avoid A >L B from being observed as a new
behaviour when arriving at the real drift point. As a result, if a new observed
directly-follows relation fails statistical tests, we delete it from the reference
window (Algorithm 1, line 28).

5 Evaluation on Synthetic Data

The proposed method is implemented as a stand-alone Java application. All the
code, data and results are publicly-available3.

5.1 Evaluation Design

We firstly collect the 72 artificial event logs from [22] which are generated from
an artificial process model containing 1 start event, 3 end events, 8 gateways
and 15 activities. [22] systemically alters the base model by 12 simple patterns
shown in Table 1. Each simple change pattern can be categorized as Insertion(I),
Resequentialization(R) and Optionaliztion(O). Then the base model is also al-
tered according to 6 composite change patterns (RIO, ROI, IOR, IRO, OIR,
ORI). For each change pattern, 4 logs with 2500, 5000, 7500, 10000 traces are

3 https://github.com/bearlu1996/ProcessDrifts

https://github.com/bearlu1996/ProcessDrifts
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Algorithm 1: Forward Detection

Input: eventStream, windowSize, numOfConsecutiveTests
1 refStartPosition ← 0

// The index of the first event in the reference window

2 refSubLog ← getSubLog(eventStream, windowSize, refStartPosition)
3 refDfRelations ← getDfRelations(refSubLog)

// The directly-follows relations of the sub-log

4 while refStartPosition+ 2 · windowSize+ numOfConsecutiveTests <
eventStreamSize do

5 e ← getNewEvent()
// Peek the first event immediately after the reference window

6 >e← getNewDfRelation(e, refSubLog)
// Get the new directly-follows relation brought by e

7 numOfSatisfiedTests ← 0
8 if >e 6= null AND >e /∈ refDfRelations then

// A candidate drift point is found

9 for i← 0 to 2 · numOfConsecutiveTests do
10 refTestSubLog ← Sub-log for window starting with event

refStartPosition - numOfConsecutiveTests + i
11 decTestSubLog ← Sub-log for window starting with event

refStartPosition - numOfConsecutiveTests + windowSize + i
12 Compute Contigency matrix based on the frequency of

directly-follows relations in refTestSubLog and decTestSubLog
13 Perform G-test on the matrix and get pValue
14 if pValue is smaller than the threshold then
15 Compute ASR for >e

16 if ASR is significant then
17 numOfSatisfiedTests ++
18 end

19 end

20 end

21 end
22 if numOfSatisfiedTests = 2 · numOfConsecutiveTests then
23 Report drift point e
24 RefStartPosition ← index of e
25 Update refSubLog and refDfRelations

// Move the beginning of the reference window to the new

detected change point

26 else
27 if >e 6= null AND >e /∈ refSubLog then
28 Remove >e from refDfRelations
29 end
30 RefStartPosition ++
31 Update refSubLog and refDfRelations

// Move the reference window by one event

32 end

33 end
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generated with a sudden process drift after every 10% of traces4. The synthetic
data set has also been used to evaluate drift detection algorithms in [5, 14].

Since branching frequency changes cannot be reflected on changes of directly-
follows relations, it cannot be detected by our proposed method. We exclude its
corresponding four event logs from our evaluation. Then for each event log, we
insert noise by randomly adding and removing 10%, 20% and 30% of events.
To avoid biases caused by randomly generated noise, we generate 10 logs for
each log at each noise level and take the average results in the following parts.
In total, we evaluate our algorithm on 4148 synthetic event logs5 including logs
without noise. It has to be noted that inserting noise will not change the trace
indexes of process drifts6.

In this section, when two drift points are reported by searches from different
directions, and the distance between them is smaller than the window size, we
only take the point with a smaller index.

Finally, since the drifts in the artificial event logs are inter-trace drifts (i.e.
drifts occur between complete trace executions), we stream the events in the
order from the first event in the first trace to the last event in the last trace7 in
both our method and the baseline so that these drifts can also be detected by
event-stream based algorithms. In this section, trace ids are used to represent
the location of all process drifts8.

Table 1. Simple control-flow change patterns.

Title Suppressed Due to Excessive Length 9

generated with a sudden process drift after every 10% of traces3. The synthetic
data set has also been used to evaluate drift detection algorithms in [5, 14].

Since changing branching frequency cannot be reflected on changes of directly-
follows relations, it cannot be detected by our proposed method. We exclude its
corresponding four event logs from our evaluation. Then for each event log, we
insert noises by randomly adding and removing 10%, 20% and 30% of events.
To avoid biases caused by randomly generated noises, we generate 10 logs for
each noise level and take the average results in the following parts. In total,
we evaluate our algorithm on 4148 synthetic event logs4 including logs without
noises. It has to be noted that inserting noises will not change the trace indexes
of process drifts5.

When two drift points are reported by searches from different directions, and
the distance between them is within the window size, we only take the point
with a smaller index.

Finally, since the drifts in the artificial event logs are trace-based, we stream
the events in the order from the first event in the first trace to the last event in
the last trace6 in both our method and the baseline so that these drifts can also
be detected by event-stream based algorithms. In this section, trace ids are used
to represent the location of all process drifts7.

Table 1. Simple control-flow change patterns

Code Simple Change Pattern Category

re Add/remove fragment I
cf Make two fragments conditional/sequential R
lp Make fragment loopable/non-loopable O
pl Make two fragments parallel/sequential R
cb Make fragment skippable/non-skippable O
cm Move fragment into/out of conditional branch I
cd Synchronize two fragments R
cp Duplicate fragment I
pm Move fragment into/out of parallel branch I
rp Substitute fragment I
sw Swap two fragments I
fr Change branching frequency O

Evaluation Metrics Standard f-score metric for evaluating process drifts de-
tection approaches is used in our evaluation [4, 14] where precision = TP/(TP +
FP ), recall = TP/(TP + FN), f − Score = 2 ∗ precision ∗ recall/(precision +

3 9 drift points are included in each log.
4 4148 = 68× 6× 10 + 68
5 We do not add/remove traces into the event logs
6 For example, event 0 refers to the 1st event in the 1st trace, event 1 refers to the

2nd event in the 2nd trace ... the last event refers to the last event in the last trace.
7 When an event id is reported, we refer to the id of its corresponding trace.

Evaluation Metrics Standard f-score metric for evaluating process drifts de-
tection approaches is used in our evaluation [4, 14] where precision = TP/(TP+
FP ), recall = TP/(TP + FN), f − score = 2 ∗ precision ∗ recall/(precision +
recall). TP refers to true positive, FN refers to false negative, and FP refers to
false positive. To describe the three variables, an error tolerance (ET) is defined.
A TP is detected if a change point t is detected where the actual drift point is

4 9 drift points are included in each log.
5 4148 = 68× 6× 10 + 68
6 We do not add/remove traces into/from the event logs
7 For example, event 0 refers to the 1st event in the 1st trace, event 1 refers to the

2nd event in the 1st trace ... the last event refers to the last event in the last trace.
8 When an event id is reported, we refer to the id of its corresponding trace.
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within the integer interval [t - ET, t + ET]. A FP is detected if a change point
t is detected and there is not an actual drift point within the integer interval [t
- ET, t + ET]. A FN is detected if an actual process drift exists in the integer
interval [t - ET, t + ET] where no change points are detected.

Baseline Among several existing methods, the ProDrift event-based method [11]
seem to be more capable in handling noise than other popular methods such
as [4, 5, 14, 22]. As suggested by its documentation, we change the noise filter-
ing threshold to 0 and drift sensitivity to ”very high” for noise-free logs, and
we use its default settings for all other logs (adaptive window is enabled for all
tests).

5.2 Evaluation on Different Parameter Settings

In the first experiment, we evaluate the impact of window sizes and the number
of consecutive tests on the detection results. We test a total of 6 different window
sizes ranging from 500 to 3000, and we combine them with 4 different number
of consecutive tests, ranging from windowSize / 5 to windowSize / 2. For each
of the 24 settings, we run all the synthetic event logs and calculate the average
f-scores. Fig.3 shows the average f-scores when the error tolerance is set to 10.

Overall, the impacts of the number of consecutive tests to f-scores are small.
When the number of consecutive tests is set to be WindowSize / 2, the accuracy
is slightly higher and more consistent in most cases unless a small window size
is set. We decide to set the number of consecutive tests to WindowSize / 2 as
the default setting for our method.

With the number of consecutive tests being empirically set, the only user
input required is the windowSize, When logs of size 2.5k are included (Fig.3 left),
the average f-Scores drops after the window size of 1000 since the window size
becomes larger than the distance between two consecutive process drift points.
We then remove logs of size 2.5k from the calculation (Fig.3 right), results show
that f-Scores are less sensitive to the choice of window sizes. Although a larger
sample can result in more reliable statistical test results, having a larger window
size could increase the chance of treating a new observed noisy directly-follows
relation as a real drift point when it is close to the actual drift point, and the
noisy directly-follows relation is the same as one of the added directly-follows
relations after the drift point (Section 4.4). It is worth mentioning that the
average f-score of the baseline is only 0.03 when ET = 10, which is much lower
than our method. We also calculate average f-scores when ET = 50 and obtain
similar observations.

It is also noticed that the choice of window sizes is related to the distance
between two consecutive process drifts. For most current window-based process
drift detection approaches, the accuracy drops when the window size is larger
than the minimal distance between two consecutive drifts, or the window size is
too small that event logs within windows are incomplete even if adaptive window
approaches are implemented. In the remaining text, we report the results with
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the number of consecutive tests = WindowSize / 2. In section 5.3 and 5.4, we
set the window size of our method to 1500.

w500 w1000 w1500 w2000 w2500 w3000
c2 0.384411 0.59126 0.617788 0.618958 0.615833 0.587498
c3 0.608214 0.631744 0.612633 0.590987 0.580257 0.570991
c4 0.652466 0.629781 0.593559 0.563206 0.550928 0.542214
c5 0.66903 0.621625 0.575402 0.544236 0.53134 0.525757
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Fig. 3. Average f-scores (ET = 10) under different settings including logs of size 2.5k
(left) and excluding logs of size 2.5k (right). Each color represents a setting of number
of consecutive tests. For example, c2 means WindowSize / 2 consecutive tests required
in one direction (Section 4.4).

5.3 Comparing with the Baseline on Different Change Patterns

In the second experiment, the accuracy of our proposed method and the baseline
is compared for each change pattern and under different noise levels.

We firstly run both methods on the 68 noise-free event logs, and the results
are presented in Fig.4 where each f-score is averaged over 4 logs with different
sizes. When ET = 50, our method achieves an average f-score of 0.88 while the
baseline achieves 0.58. When ET = 10, our average f-score achieves 0.85, which
is close to the results when ET = 50. However, the baseline drops to 0.21, which
means our method is more accurate.

Our method Our metho BaseLine Our method
cb 0.281818182 0.970588 0.027778 cb 0.190909091
cd 0.803571429 1 0.5 cd 0.726190476
cf 1 1 0.638889 cf 0.972222222
cm 0.55 0.985294 0.486842 cm 0.55
cp 1 1 0.722222 cp 0.944444444
IOR 0.970588235 1 0.472222 IOR 0.970588235
IRO 0.970588235 1 0.527778 IRO 0.795751634
lp 0.603846154 1 0.611111 lp 0.603846154
OIR 1 1 0.66866 OIR 0.972222222
ORI 1 1 0.666667 ORI 0.972222222
pl 0.922794118 1 0.444444 pl 0.922794118
pm 1 1 0.75 pm 1
re 0.903846154 1 0.599016 re 0.903846154
RIO 0.985294118 1 0.5 RIO 0.95751634
ROI 1 1 0.75 ROI 1
rp 1 1 0.75 rp 1
sw 1 1 0.75 sw 1
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Fig. 4. Average f-scores per change pattern for noise-free logs comparing to the baseline
with ET = 50 and 10.

Fig.5 shows the average f-scores for each change pattern under different noise
levels when ET = 50 and ET = 10 where each f-score is averaged over 40 logs.
When ET = 50, our method achieves an average f-score9 of 0.8 and an average

9 Among all the logs with noise.
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Fig. 5. Average f-scores per change pattern comparing to the baseline with ET =
50 and 10. For noise levels, + refers to inserting activities, and - refers to removing
activities.
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of 0.57 when ET = 10. Comparing to the baseline, our method wins in almost
all cases. When noise is inserted into the log, the baseline can achieve satisfied
f-scores for a few change patterns when ET = 50. However, when ET = 10, the
f-scores of the baseline drops dramatically, of which the f-scores are 0 in most
cases.

It is also interesting to find that our method performs better when removing
events from the event log. The main reason is that when inserting events into
logs, the probability that a noisy directly-follows relation is inserted before a drift
point which is the same as one of the added directly-follows relation after the
drift point is higher (Section 4.4). Thus, our method could report process drifts
earlier than the actual drift points, causing lower f-scores when ET is small. We
find that this is the biggest factor affecting the results.

Finally, we also calculate the average precision among both methods when
ET = 50. Our method achieves an average precision of 0.97 among all event logs
while the precision of the baseline is only 0.3. A high precision indicates that our
method will not return too many results which are not actual process drifts or
mistakenly treat infrequent behaviours as process drift points, saving the time
it takes to validate each drift point. In conclusion, our method is more accurate
and reliable than the baseline for both event logs with or without noise.

5.4 Execution Time

In the last experiment, we run both our method and the baseline on all artificial
logs and record their execution time. The platform is equipped with Intel i7-
9700 (8 cores, 8 threads) and 32GB RAM, running Windows 10 (64 bit) with a
heap space of 16GB. Among the 4148 event logs, our method takes 0.03ms (min
0.01ms, max 0.13ms) for each event on average while the baseline takes 0.1ms
(min 0.05ms, max 0.26ms) where average execution time for each event = total
execution time / number of events. The results indicate that our method can
detect process drifts efficiently and can be potentially applied in online settings.

6 Evaluation on Real-life Data

We evaluate our algorithm on the BPI Challenge 2020 (BPIC2020) data-sets10.
The BPIC 2020 data-sets collect a total of five event logs of travel reimbursement
processes at Eindhoven University of Technology (TU/e) from 2017 to 2018, and
each log corresponds to one type of request types. Depending on the specific
request type, employees can usually submit three types of documents which
are travel declarations, travel permits and payment requests (Some event logs
may not contain all document types). As described in the documentation, all
documents follow a similar workflow, and the processes in 2017 and 2018 are
different since 2017 is a pilot year. The information suggests that there is a
potential process drift for the five logs sometime between the end of 2017 and
the beginning of 2018.

10 https://icpmconference.org/2020/bpi-challenge/

https://icpmconference.org/2020/bpi-challenge/
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We run our method on all five event logs without applying any noise filter-
ing approaches. The description of each event log, window size used for drift
detection, total execution time11 and detection results are presented in Table 2.

Table 2. Process drifts detection results on BPIC2020 data-sets.

Log Traces Events Window 
Size 

Time Drift Points Detected 
Event ID (Event Time)

Requests for Payment 6,886 36,796 2,000 1.43s Forward: 4948(2018-01-06 20:00:55)
Backward: 4878(2017-12-22 02:56:06) 

Domestic Declarations 10,500 56,437 2,000 1.68s Forward: 9948(2018-01-06 19:42:04)
Backward: 9876(2017-12-22 22:07:12) 

Prepaid Travel Cost 2,099 18,246 1,500 1.3s Forward: 2369(2018-01-07 02:22:19)
Backward: 2362(2017-12-19 19:22:00) 

International Declarations 6,449 72,151 2,000 6.63s Forward: 12603(2018-01-06 21:13:26)
Backward: 12426(2017-12-22 03:11:38) 

Travel Permits 7,065 86,581 2,000 7.79s Forward: 13749(2018-01-06 21:13:26)
Backward: 13630(2017-12-22 03:11:38) 

As shown in Table.2, the time for drift points is similar among the five logs.
For each event log, the forward detection finds a drift point at the beginning of
2018 (new behaviours added), and the backward detection finds a drift at the
end of 2017 (old behaviours removed). Besides, the number of events between
the two drift points for each log is small (Although there is a relatively long time
interval between the two drift points, we believe this is caused by the Christmas
vacation). The results indicate that there is a process drift in each log sometime
between the two detected drift points (at the end of 2017 or beginning of 2018)
which involves both adding and removing of behaviours. The results conform to
the documentation of the data-sets.

To further validate the results, we cut each event log into two sub-logs using
the results of backward defections. We observe similar significant changes to all
the five logs. Before the process drift, when a document is submitted, it can be
sent to ”pre-approvers” or supervisors for approval. After the process drift, the
submission will be sent to the administration for approval, and if approved by
the administration, it will be forwarded to the supervisor or budget owner for
further steps. Fig.6 shows the process drift for the Domestic Declarations log.

Finally, it is worth mentioning that our method is efficient to detect process
drifts. The time it takes to detect process drifts among all the five logs is within
10 seconds while three of the logs are completed within 2 seconds.

11 The time includes converting the event log into event stream, forward detection and
backward detection. The platform is the same as Section 5.4.
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Fig. 6. Simple directly-follows graphs showing the process before (2017) and after
(2018) the drift in the Domestic Declarations log.

7 Conclusion

In this paper, we propose a new process drift detection method which can accu-
rately locate the process drift points. If a valid drift can be identified, subsequent
comparative analysis can be performed for process improvement. In addition, ac-
curate process drift detection results can also be used as input for process drift
characterization methods such as [2, 15] to generate more accurate results.

Different from previous work, our method does not rely on statistical tests to
detect process drifts but applying statistical tests to differentiate between real
process drift points and noise. The advantages of our method are as follows: First,
The detection accuracy is high among event logs with different noise levels, and
the high precision indicates the method returns very few false positives. Second,
There is no need to define a noise filtering threshold, which reduces the need for
background knowledge about the data. Lastly, The detection speed is reasonably
fast.

It has to be noted that like other current window-based process drift detection
algorithms, under different parameter settings, the detection results can still be
different among different logs with different noise levels and with different process
change types. In addition, process drifts which only contain branching frequency
changes cannot be detected by the proposed method.

Future work includes the following aspects: First, we aim to propose a way
to determine the window size automatically for different logs. Second, we plan to
extend the work to characterize different drift types and provide comprehensive
results. Finally, we aim to improve our work to suit online settings.
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