Skip to main content

A Robust and Accurate Approach to Detect Process Drifts from Event Streams

  • Conference paper
  • First Online:
Business Process Management (BPM 2021)

Abstract

Business processes are bound to evolve as a form of adaption to changes, and such changes are referred as process drifts. Current process drift detection methods perform well on clean event log data, but the performance can be tremendously affected by noise. A good process drift detection method should be accurate, fast, and robust to noise. In this paper, we propose an offline process drift detection method which identifies each newly observed behaviour as a candidate drift point and checks if the new behaviour can signify significant changes to the original process behaviours. In addition, a bidirectional search method is proposed to accurately locate both the adding and removing of behaviours. The proposed method can accurately detect drift points from event logs and is robust to noise. Both artificial and real-life event logs are used to evaluate our method. Results show that our method can consistently report accurate process drift time while maintaining a reasonably fast detection speed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Alpha+ relations define a set of relations between activities which are conflict, concurrency, causality, length-one loop and length-two loop. For their formal definitions, please refer to [20].

  2. 2.

    The G-test of independence is a non-parametric statistical hypothesis test.

  3. 3.

    https://github.com/bearlu1996/ProcessDrifts.

  4. 4.

    9 drift points are included in each log.

  5. 5.

    \(4148 = 68 \times 6 \times 10 + 68\).

  6. 6.

    We do not add/remove traces into/from the event logs.

  7. 7.

    For example, event 0 refers to the 1st event in the 1st trace, event 1 refers to the 2nd event in the 1st trace ... the last event refers to the last event in the last trace.

  8. 8.

    When an event id is reported, we refer to the id of its corresponding trace.

  9. 9.

    Among all the logs with noise.

  10. 10.

    https://icpmconference.org/2020/bpi-challenge/.

  11. 11.

    The time includes converting the event log into event stream, forward detection and backward detection. The platform is the same as Sect. 5.4.

References

  1. Bose, R.P.J.C., van der Aalst, W.M.P., Zliobaite, I., Pechenizkiy, M.: Dealing with concept drifts in process mining. IEEE Trans. NNLS 25(1), 154–171 (2014)

    Google Scholar 

  2. Ostovar, A., Maaradji, A., La Rosa, M., ter Hofstede, A.H.M.: Characterizing drift from event streams of business processes. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 210–228. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_14

    Chapter  Google Scholar 

  3. van der Aalst, W.M.P.: Process Mining - Data Science in Action. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4_1

  4. Zheng, C., Wen, L., Wang, J.: Detecting process concept drifts from event logs. In: OTM CoopIS, pp. 524–542 (2017)

    Google Scholar 

  5. Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Detecting sudden and gradual drifts in business processes from execution traces. IEEE TKDE 29(10), 2140–2154 (2017)

    Google Scholar 

  6. Seeliger, A., Nolle, T., Mühlhäuser, M.: Detecting concept drift in processes using graph metrics on process graphs. In: Proceedings of the 9th Conference on Subject-Oriented Business Process Management, pp. 6:1 (2017)

    Google Scholar 

  7. Martjushev, J., Bose, R.P.J.C., van der Aalst, W.M.P.: Change point detection and dealing with gradual and multi-order dynamics in process mining. In: Matulevičius, R., Dumas, M. (eds.) BIR 2015. LNBIP, vol. 229, pp. 161–178. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21915-8_11

    Chapter  Google Scholar 

  8. Stertz, F., Rinderle-Ma, S.: Process histories - detecting and representing concept drifts based on event streams. In: Panetto, H., Debruyne, C., Proper, H.A., Ardagna, C.A., Roman, D., Meersman, R. (eds.) OTM 2018. LNCS, vol. 11229, pp. 318–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02610-3_18

    Chapter  Google Scholar 

  9. Stertz, F., Rinderle-Ma, S.: Detecting and identifying data drifts in process event streams based on process histories. In: Cappiello, C., Ruiz, M. (eds.) CAiSE 2019. LNBIP, vol. 350, pp. 240–252. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21297-1_21

  10. Brockhoff, T., Uysal, M.S., van der Aalst, W.M.: In: Time-aware Concept Drift Detection Using the Earth Mover’s Distance, pp. 33–40. IEEE (2020)

    Google Scholar 

  11. Ostovar, A., Maaradji, A., La Rosa, M., ter Hofstede, A.H.M., van Dongen, B.F.V.: Detecting drift from event streams of unpredictable business processes. In: Comyn-Wattiau, I., Tanaka, K., Song, I.-Y., Yamamoto, S., Saeki, M. (eds.) ER 2016. LNCS, vol. 9974, pp. 330–346. Springer, Cham (2016)

    Google Scholar 

  12. Hompes, B.F.A., Buijs, J.C.A.M., van der Aalst, W.M.P., Dixit, P.M., Buurman, J.: Detecting changes in process behavior using comparative case clustering. In: Ceravolo, P., Rinderle-Ma, S. (eds.) SIMPDA 2015. LNBIP, vol. 244, pp. 54–75. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-53435-0_3

    Chapter  Google Scholar 

  13. Liu, N., Huang, J., Cui, L.: In: A framework for online process concept drift detection from event streams, pp. 105–112. IEEE, San Francisco, CA, USA (2018)

    Google Scholar 

  14. Lin, L., Wen, L., Lin, L., Pei, J., Yang, H.: LCDD: detecting business process drifts based on local completeness. IEEE Trans. Services Comput. (2020)

    Google Scholar 

  15. Ostovar, A., Leemans, S.J., Rosa, M.L.: Robust drift characterization from event streams of business processes. ACM Trans. Knowl. Discov. Data (TKDD) 14(3), 1–57 (2020)

    Article  Google Scholar 

  16. Yeshchenko, A., Di Ciccio, C., Mendling, J., Polyvyanyy, A.: Comprehensive process drift detection with visual analytics. In: Laender, A.H.F., Pernici, B., Lim, E.-P., de Oliveira, J.P.M. (eds.) ER 2019. LNCS, vol. 11788, pp. 119–135. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-33223-5_11

    Chapter  Google Scholar 

  17. Carmona, J., Gavaldà, R.: Online techniques for dealing with concept drift in process mining. In: Hollmén, J., Klawonn, F., Tucker, A. (eds.) IDA 2012. LNCS, vol. 7619, pp. 90–102. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34156-4_10

    Chapter  Google Scholar 

  18. Accorsi, R., Stocker, T.: Discovering workflow changes with time-based trace clustering. In: Aberer, K., Damiani, E., Dillon, T. (eds.) SIMPDA 2011. LNBIP, vol. 116, pp. 154–168. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34044-4_9

    Chapter  Google Scholar 

  19. Bose, R.P.J.C., van der Aalst, W.M.P., Žliobaitė, I., Pechenizkiy, M.: Handling concept drift in process mining. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 391–405. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21640-4_30

    Chapter  Google Scholar 

  20. Alves de Medeiros, A.K., van Dongen, B.F., van der Aalst, W.M.P., Weijters, A.J.M.M.: Process mining: Extending the \(\alpha \)-algorithm to mine short loops. BETA Working Paper Series WP 113, Eindhoven University of Technology (2004)

    Google Scholar 

  21. Agresti, A.: Categorical Data Analysis, vol. 482. John Wiley, Hoboken (2003)

    MATH  Google Scholar 

  22. Maaradji, A., Dumas, M., La Rosa, M., Ostovar, A.: Fast and accurate business process drift detection. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015. LNCS, vol. 9253, pp. 406–422. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23063-4_27

    Chapter  Google Scholar 

  23. Woolf, B.: The log likelihood ratio test (the G-test). Annal. Hum. Genet 21(4), 397–409 (1957)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lu, Y., Chen, Q., Poon, S. (2021). A Robust and Accurate Approach to Detect Process Drifts from Event Streams. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds) Business Process Management. BPM 2021. Lecture Notes in Computer Science(), vol 12875. Springer, Cham. https://doi.org/10.1007/978-3-030-85469-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85469-0_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85468-3

  • Online ISBN: 978-3-030-85469-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics