Skip to main content

Graph Autoencoders for Business Process Anomaly Detection

  • Conference paper
  • First Online:
Business Process Management (BPM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12875))

Included in the following conference series:

Abstract

We propose an approach to identify anomalies in business processes by building an anomaly detector using graph encodings of process event log data coupled with graph autoencoders. We evaluate the proposed approach with randomly mutated real event logs as well as synthetic data. The evaluation shows significant performance improvements (in terms of F1 score) over previous approaches, in particular with respect to other types of autoencoders that use flat encodings of the same data. The performance improvements are also stable under training and evaluation noise. Our approach is generic in that it requires no prior knowledge of the business process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at BPIC2012 and BPIC2013 data sets with injected anomalies.

  2. 2.

    Available at: BPIC2017, ‘Large’, and ‘Huge’ data sets with injected anomalies.

References

  1. Aalst, W.V.: Process mining: data science in action (2016)

    Google Scholar 

  2. Aalst, W.V., Adriansyah, A., Medeiros, A.K.A.D., Arcieri, F., Baier, T.: Process mining manifesto. Business Process Management Workshops (2011)

    Google Scholar 

  3. Aalst, W.V., Medeiros, A.K.A.D.: Process mining and security: detecting anomalous process executions and checking process conformance. Electron. Notes Theor. Comput. Sci. 121, 3–21 (2005)

    Article  Google Scholar 

  4. Aalst, W.V., Weijters, A., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16, 1128–1142 (2004)

    Article  Google Scholar 

  5. Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: PKDD (2002)

    Google Scholar 

  6. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–127 (2007)

    Article  Google Scholar 

  7. Bezerra, F., Wainer, J.: Algorithms for anomaly detection of traces in logs of process aware information systems. Inf. Syst. 38, 33–44 (2013)

    Article  Google Scholar 

  8. Bezerra, F., Wainer, J., Aalst, W.V.: Anomaly detection using process mining. In: BMMDS/EMMSAD (2009)

    Google Scholar 

  9. Bose, R.P., Aalst, W.V., Žliobaitė, I., Pechenizkiy, M.: Dealing with concept drifts in process mining. IEEE Trans. Neural Networks Learn. Syst. 25, 154–171 (2014)

    Article  Google Scholar 

  10. Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. CoRR abs/1312.6203 (2014)

    Google Scholar 

  11. Caruana, R., Lawrence, S., Giles, C.L.: Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping. In: NIPS (2000)

    Google Scholar 

  12. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: NIPS (2016)

    Google Scholar 

  13. Duvenaud, D., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: NIPS (2015)

    Google Scholar 

  14. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1263–1272. PMLR, 06–11 August 2017

    Google Scholar 

  15. Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, 2005, vol. 2, pp. 729–734 (2005)

    Google Scholar 

  16. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS (2017)

    Google Scholar 

  17. Hinkka, M., Lehto, T., Heljanko, K., Jung, A.: Structural feature selection for event logs. ArXiv abs/1710.02823 (2017)

    Google Scholar 

  18. Jain, R., Abouzakhar, N.: Hidden Markov model based anomaly intrusion detection. Presented at the (2012)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2015)

    Google Scholar 

  20. Kipf, T., Welling, M.: Variational graph auto-encoders. ArXiv abs/1611.07308 (2016)

    Google Scholar 

  21. Koninck, P.D., Broucke, S.V., Weerdt, J.: act2vec, trace2vec, log2vec, and model2vec: representation learning for business processes. In: BPM (2018)

    Google Scholar 

  22. Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks. CoRR abs/1511.05493 (2016)

    Google Scholar 

  23. Maaradji, A., Dumas, M., Rosa, M., Ostovar, A.: Fast and accurate business process drift detection. In: BPM (2015)

    Google Scholar 

  24. Nguyen, H.C., Lee, S., Kim, J., Ko, J., Comuzzi, M.: Autoencoders for improving quality of process event logs. Expert Syst. Appl. 131, 132–147 (2019)

    Article  Google Scholar 

  25. Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. ArXiv abs/1605.05273 (2016)

    Google Scholar 

  26. Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M.: Analyzing business process anomalies using autoencoders. Mach. Learn. 107(11), 1875–1893 (2018)

    Article  MathSciNet  Google Scholar 

  27. Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M.: Binet: multi-perspective business process anomaly classification. Information Systems, p. 101458, October 2019

    Google Scholar 

  28. Nolle, T., Seeliger, A., Mühlhäuser, M.: Unsupervised anomaly detection in noisy business process event logs using denoising autoencoders. In: DS (2016)

    Google Scholar 

  29. Ord, K.: Outliers in statistical data: V. barnett and t. lewis, 1994, 3rd edition, 584 pp., [uk pound]55.00, isbn 0-471-93094-6. International Journal of Forecasting 12, 175-176 (1996)

    Google Scholar 

  30. Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: ICML (2013)

    Google Scholar 

  31. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. ArXiv abs/1912.01703 (2019)

    Google Scholar 

  32. Pegoraro, M., Uysal, M.S., Aalst, W.V.: Discovering process models from uncertain event data. ArXiv abs/1909.11567 (2019)

    Google Scholar 

  33. Rogge-Solti, A., Kasneci, G.: Temporal anomaly detection in business processes. BPM (2014)

    Google Scholar 

  34. Rosa, M., Reijers, H., Aalst, W.V., Dijkman, R., Mendling, J., Dumas, M., García-Bañuelos, L.: Apromore: an advanced process model repository. Expert Syst. Appl. 38, 7029–7040 (2011)

    Article  Google Scholar 

  35. Rozinat, A., Aalst, W.V.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33, 64–95 (2008)

    Article  Google Scholar 

  36. Sarno, R., Sari, P.L.I., Ginardi, H., Sunaryono, D., Mukhlash, I.: Decision mining for multi choice workflow patterns. Presented at the (2013)

    Google Scholar 

  37. Savickas, T., Vasilecas, O.: Business process event log transformation into bayesian belief network. In: ISD (2014)

    Google Scholar 

  38. Scarselli, F., Gori, M., Tsoi, A., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20, 61–80 (2009)

    Article  Google Scholar 

  39. Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt, J.C.: Support vector method for novelty detection. In: NIPS (1999)

    Google Scholar 

  40. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. Presented at the (2017)

    Google Scholar 

  41. Warrender, C., Forrest, S., Pearlmutter, B.A.: Detecting intrusions using system calls: alternative data models. In: Proceedings of the 1999 IEEE Symposium on Security and Privacy (Cat. No.99CB36344), pp. 133–145 (1999)

    Google Scholar 

  42. Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. Presented at the (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyu Huo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huo, S., Völzer, H., Reddy, P., Agarwal, P., Isahagian, V., Muthusamy, V. (2021). Graph Autoencoders for Business Process Anomaly Detection. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds) Business Process Management. BPM 2021. Lecture Notes in Computer Science(), vol 12875. Springer, Cham. https://doi.org/10.1007/978-3-030-85469-0_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85469-0_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85468-3

  • Online ISBN: 978-3-030-85469-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics