Abstract
We propose an approach to identify anomalies in business processes by building an anomaly detector using graph encodings of process event log data coupled with graph autoencoders. We evaluate the proposed approach with randomly mutated real event logs as well as synthetic data. The evaluation shows significant performance improvements (in terms of F1 score) over previous approaches, in particular with respect to other types of autoencoders that use flat encodings of the same data. The performance improvements are also stable under training and evaluation noise. Our approach is generic in that it requires no prior knowledge of the business process.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
References
Aalst, W.V.: Process mining: data science in action (2016)
Aalst, W.V., Adriansyah, A., Medeiros, A.K.A.D., Arcieri, F., Baier, T.: Process mining manifesto. Business Process Management Workshops (2011)
Aalst, W.V., Medeiros, A.K.A.D.: Process mining and security: detecting anomalous process executions and checking process conformance. Electron. Notes Theor. Comput. Sci. 121, 3–21 (2005)
Aalst, W.V., Weijters, A., Maruster, L.: Workflow mining: discovering process models from event logs. IEEE Trans. Knowl. Data Eng. 16, 1128–1142 (2004)
Angiulli, F., Pizzuti, C.: Fast outlier detection in high dimensional spaces. In: PKDD (2002)
Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2, 1–127 (2007)
Bezerra, F., Wainer, J.: Algorithms for anomaly detection of traces in logs of process aware information systems. Inf. Syst. 38, 33–44 (2013)
Bezerra, F., Wainer, J., Aalst, W.V.: Anomaly detection using process mining. In: BMMDS/EMMSAD (2009)
Bose, R.P., Aalst, W.V., Žliobaitė, I., Pechenizkiy, M.: Dealing with concept drifts in process mining. IEEE Trans. Neural Networks Learn. Syst. 25, 154–171 (2014)
Bruna, J., Zaremba, W., Szlam, A., LeCun, Y.: Spectral networks and locally connected networks on graphs. CoRR abs/1312.6203 (2014)
Caruana, R., Lawrence, S., Giles, C.L.: Overfitting in neural nets: Backpropagation, conjugate gradient, and early stopping. In: NIPS (2000)
Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: NIPS (2016)
Duvenaud, D., et al.: Convolutional networks on graphs for learning molecular fingerprints. In: NIPS (2015)
Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message passing for quantum chemistry. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1263–1272. PMLR, 06–11 August 2017
Gori, M., Monfardini, G., Scarselli, F.: A new model for learning in graph domains. In: Proceedings of the 2005 IEEE International Joint Conference on Neural Networks, 2005, vol. 2, pp. 729–734 (2005)
Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: NIPS (2017)
Hinkka, M., Lehto, T., Heljanko, K., Jung, A.: Structural feature selection for event logs. ArXiv abs/1710.02823 (2017)
Jain, R., Abouzakhar, N.: Hidden Markov model based anomaly intrusion detection. Presented at the (2012)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR abs/1412.6980 (2015)
Kipf, T., Welling, M.: Variational graph auto-encoders. ArXiv abs/1611.07308 (2016)
Koninck, P.D., Broucke, S.V., Weerdt, J.: act2vec, trace2vec, log2vec, and model2vec: representation learning for business processes. In: BPM (2018)
Li, Y., Tarlow, D., Brockschmidt, M., Zemel, R.: Gated graph sequence neural networks. CoRR abs/1511.05493 (2016)
Maaradji, A., Dumas, M., Rosa, M., Ostovar, A.: Fast and accurate business process drift detection. In: BPM (2015)
Nguyen, H.C., Lee, S., Kim, J., Ko, J., Comuzzi, M.: Autoencoders for improving quality of process event logs. Expert Syst. Appl. 131, 132–147 (2019)
Niepert, M., Ahmed, M., Kutzkov, K.: Learning convolutional neural networks for graphs. ArXiv abs/1605.05273 (2016)
Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M.: Analyzing business process anomalies using autoencoders. Mach. Learn. 107(11), 1875–1893 (2018)
Nolle, T., Luettgen, S., Seeliger, A., Mühlhäuser, M.: Binet: multi-perspective business process anomaly classification. Information Systems, p. 101458, October 2019
Nolle, T., Seeliger, A., Mühlhäuser, M.: Unsupervised anomaly detection in noisy business process event logs using denoising autoencoders. In: DS (2016)
Ord, K.: Outliers in statistical data: V. barnett and t. lewis, 1994, 3rd edition, 584 pp., [uk pound]55.00, isbn 0-471-93094-6. International Journal of Forecasting 12, 175-176 (1996)
Pascanu, R., Mikolov, T., Bengio, Y.: On the difficulty of training recurrent neural networks. In: ICML (2013)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. ArXiv abs/1912.01703 (2019)
Pegoraro, M., Uysal, M.S., Aalst, W.V.: Discovering process models from uncertain event data. ArXiv abs/1909.11567 (2019)
Rogge-Solti, A., Kasneci, G.: Temporal anomaly detection in business processes. BPM (2014)
Rosa, M., Reijers, H., Aalst, W.V., Dijkman, R., Mendling, J., Dumas, M., García-Bañuelos, L.: Apromore: an advanced process model repository. Expert Syst. Appl. 38, 7029–7040 (2011)
Rozinat, A., Aalst, W.V.: Conformance checking of processes based on monitoring real behavior. Inf. Syst. 33, 64–95 (2008)
Sarno, R., Sari, P.L.I., Ginardi, H., Sunaryono, D., Mukhlash, I.: Decision mining for multi choice workflow patterns. Presented at the (2013)
Savickas, T., Vasilecas, O.: Business process event log transformation into bayesian belief network. In: ISD (2014)
Scarselli, F., Gori, M., Tsoi, A., Hagenbuchner, M., Monfardini, G.: The graph neural network model. IEEE Trans. Neural Networks 20, 61–80 (2009)
Schölkopf, B., Williamson, R., Smola, A., Shawe-Taylor, J., Platt, J.C.: Support vector method for novelty detection. In: NIPS (1999)
Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. Presented at the (2017)
Warrender, C., Forrest, S., Pearlmutter, B.A.: Detecting intrusions using system calls: alternative data models. In: Proceedings of the 1999 IEEE Symposium on Security and Privacy (Cat. No.99CB36344), pp. 133–145 (1999)
Zhou, C., Paffenroth, R.C.: Anomaly detection with robust deep autoencoders. Presented at the (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Huo, S., Völzer, H., Reddy, P., Agarwal, P., Isahagian, V., Muthusamy, V. (2021). Graph Autoencoders for Business Process Anomaly Detection. In: Polyvyanyy, A., Wynn, M.T., Van Looy, A., Reichert, M. (eds) Business Process Management. BPM 2021. Lecture Notes in Computer Science(), vol 12875. Springer, Cham. https://doi.org/10.1007/978-3-030-85469-0_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-85469-0_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85468-3
Online ISBN: 978-3-030-85469-0
eBook Packages: Computer ScienceComputer Science (R0)