Skip to main content

Density-Based Evaluation Metrics in Unsupervised Anomaly Detection Contexts

  • Conference paper
  • First Online:
Modeling Decisions for Artificial Intelligence (MDAI 2021)

Abstract

From cybersecurity to life sciences, anomaly detection is considered crucial as it often enables the identification of relevant semantic information that can help to prevent and detect events such as cyber attacks or patients heart-attacks. Although anomaly detection is a prominent research area it still encompasses several challenges, namely regarding results evaluation in real-world unlabelled and imbalanced datasets. This work contributes to understand and compare the behaviour of different evaluation metrics, namely classic metrics based on positive and negative rates, and density based metrics without classes information. We experiment five state-of-art anomaly detection approaches over two datasets with contrasting characteristics regarding dimensionality or contamination. Each metrics’ ability to give trustful results is analysed regarding different datasets or approaches properties focusing on the possibility of evaluating real-world unsupervised learning models using density metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C.: Outlier Analysis. Springer, New York (2013). https://doi.org/10.1007/978-1-4614-6396-2

  2. Audibert, J., Michiardi, P., Guyard, F., Marti, S., Zuluaga, M.A.: USAD: unsupervised anomaly detection on multivariate time series. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 3395–3404 (2020)

    Google Scholar 

  3. Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: ACM SIGMOD Record, vol. 29, pp. 93–104. ACM (2000)

    Google Scholar 

  4. Campos, G.O., et al.: On the evaluation of unsupervised outlier detection: measures, datasets, and an empirical study. Data Mining Knowl. Discov. 30(4), 891–927 (2016). https://doi.org/10.1007/s10618-015-0444-8

  5. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)

    Article  Google Scholar 

  6. Clémençon, S., Jakubowicz, J.: Scoring anomalies: a M-estimation formulation. In: Artificial Intelligence and Statistics, pp. 659–667 (2013)

    Google Scholar 

  7. Clémençon, S., Thomas, A.: Mass volume curves and anomaly ranking. arXiv preprint arXiv:1705.01305 (2017)

  8. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995). https://doi.org/10.1007/BF00994018

    Article  MATH  Google Scholar 

  9. Goix, N.: How to evaluate the quality of unsupervised anomaly detection algorithms? arXiv:1607.01152 [cs, stat], July 2016

  10. Goix, N., Sabourin, A., Clémençon, S.: On anomaly ranking and excess-mass curves. In: Artificial Intelligence and Statistics, pp. 287–295 (2015)

    Google Scholar 

  11. Goldstein, M., Uchida, S.: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PLoS ONE 11(4), e0152173 (2016). https://doi.org/10.1371/journal.pone.0152173. https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0152173

  12. Grubbs, F.E.: Procedures for detecting outlying observations in samples. Technometrics 11(1), 1–21 (1969)

    Article  Google Scholar 

  13. Gupta, M., Gao, J., Aggarwal, C.C., Han, J.: Outlier detection for temporal data: a survey. IEEE Trans. Knowl. Data Eng. 26(9), 2250–2267 (2014)

    Article  Google Scholar 

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–80 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  15. Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004)

    Article  Google Scholar 

  16. Ismail Fawaz, H., Forestier, G., Weber, J., Idoumghar, L., Muller, P.A.: Deep learning for time series classification: a review. Data Mining Knowl. Discov. (2019). https://doi.org/10.1007/s10618-019-00619-1

  17. Lavin, A., Ahmad, S.: Evaluating real-time anomaly detection algorithms-the Numenta Anomaly Benchmark. In: 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA), pp. 38–44. IEEE (2015)

    Google Scholar 

  18. Müller, D.W., Sawitzki, G.: Excess mass estimates and tests for multimodality. J. Ame. Stat. Assoc. 86(415), 738–746 (1991)

    MathSciNet  MATH  Google Scholar 

  19. Rousseeuw, P.J., Driessen, K.V.: A fast algorithm for the minimum covariance determinant estimator. Technometrics 41(3), 212–223 (1999)

    Article  Google Scholar 

  20. Su, Y., Zhao, Y., Niu, C., Liu, R., Sun, W., Pei, D.: Robust anomaly detection for multivariate time series through stochastic recurrent neural network. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2828–2837 (2019)

    Google Scholar 

  21. Zhao, H., et al.: Multivariate time-series anomaly detection via graph attention network. arXiv preprint arXiv:2009.02040 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Maia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maia, R., Antunes, C. (2021). Density-Based Evaluation Metrics in Unsupervised Anomaly Detection Contexts. In: Torra, V., Narukawa, Y. (eds) Modeling Decisions for Artificial Intelligence. MDAI 2021. Lecture Notes in Computer Science(), vol 12898. Springer, Cham. https://doi.org/10.1007/978-3-030-85529-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85529-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85528-4

  • Online ISBN: 978-3-030-85529-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics