Skip to main content

Differential Non-autonomous Representation of the Integrative Activity of a Neural Population by a Bilinear Second-Order Model with Delay

  • Conference paper
  • First Online:
Human Interaction, Emerging Technologies and Future Systems V (IHIET 2021)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 319))

Abstract

For neuromorphic processes specified by the behavior of a local neural population (for example, processes induced by a “brain-machine” interface platform of the Neuralink type), we study the solvability of the problem of the existence of a differential realization of these processes in the class of bilinear nonstationary ordinary differential equations of the second order (with delay) in a separable Hilbert space. This formulation belongs to the type of inverse problems for an additive combination of nonstationary linear and bilinear operators of evolutionary equations in an infinite-dimensional Hilbert space. The metalanguage of the theory being developed is the constructions of tensor products of Hilbert spaces, orthocomplemented lattice structures, the functional means of the nonlinear Rayleigh-Ritz operator, and the principle of maximum entropy. It is shown that the property of sublinearity of this operator permits one to obtain conditions for the existence of such differential realizations; concurrently, metric conditions of the continuity of the projectivization of this operator are substantiated with the calculation of the fundamental group of its compact image. This work was financially supported by the Russian Foundation for Basic Research (project no. 19-01-00301).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Polyakov, G.I.: On the Principles of Neural Organization of the Brain. MSU Publ., Moscow (1965)

    Google Scholar 

  2. Brzychczy, S., Poznanski, R.: Mathematical Neuroscience. Academic Press (2013)

    Google Scholar 

  3. Kalman, R., Falb, P., Arbib, M.: Essays on the Mathematical Theory of Systems. Mir Publ., Moscow (1971)

    MATH  Google Scholar 

  4. Rusanov, V.A., Banshchikov, A.V., Daneev, A.V., Lakeyev, A.V.: Maximum entropy principle in the differential second-order realization of a nonstationary bilinear system. In: Advances in Differential Equations and Control Processes, vol. 20, no. 2, pp. 223–248 (2019)

    Google Scholar 

  5. Rusanov, V.A., Daneev, A.V., Lakeyev, A.V., Sizykh, V.N.: Higher-order differential realization of polylinear-controlled dynamic processes in a Hilbert space. In: Advances in Differential Equations and Control Processes, vol. 19, no. 3, pp. 263–274 (2018)

    Google Scholar 

  6. Savelyev, A.V.: Sources of variations in the dynamic properties of the nervous system at the synaptic level in neurocomputing. The NAS of Ukraine, no. 4, pp. 323–338 (2006)

    Google Scholar 

  7. Kantorovich, L.V., Akilov, G.P.: Funktsional'nyianaliz [Functional analysis]. Nauka Publ., Moscow (1977)

    Google Scholar 

  8. Yoshida, K.: Functional Analysis. Mir Publ., Moscow (1967)

    Google Scholar 

  9. Kirilov, A.A.: Elements of Representation Theory. Nauka publ., Moscow (1978)

    Google Scholar 

  10. Rusanov, V.A., Daneev, A.V., Lakeev, A.V., Linke, Yu.É.: On the Differential Realization Theory of Nonlinear Dynamic Processes in Hilbert Space. Far East J. Math. Sci. 97(4), 495–532 (2015)

    Google Scholar 

  11. Edwards, R.: Functional Analysis: Theory and Applications. Mir Publ., Moscow (1969)

    MATH  Google Scholar 

  12. Prasolov, V.V.: Elements of Combinatorial and Differential Topology. MTsNMO Publ., Moscow (2014)

    MATH  Google Scholar 

  13. Rusanov, V.A., Daneev, A.V., Lakeyev, A.V., Linke, Y.: On the theory differential realization: criterions for the continuity of the nonlinear rayleighritz operator. Int. J. Funct. Anal. Oper. Theory Appl. 12(1), 1–22 (2020)

    Google Scholar 

  14. Reed, M., Simon, B.: Metodysovremennoi matematicheskoi fiziki: Funktsional'nyi analiz [Methods of modern mathematical physics: Functional analysis]. Moscow: Mir Publ. (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Daneev, A.V., Lakeev, A.V., Rusanov, V.A., Plesnev, P.A. (2022). Differential Non-autonomous Representation of the Integrative Activity of a Neural Population by a Bilinear Second-Order Model with Delay. In: Ahram, T., Taiar, R. (eds) Human Interaction, Emerging Technologies and Future Systems V. IHIET 2021. Lecture Notes in Networks and Systems, vol 319. Springer, Cham. https://doi.org/10.1007/978-3-030-85540-6_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85540-6_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85539-0

  • Online ISBN: 978-3-030-85540-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics