Abstract
Wearables capture physiological user data, enabling novel user interfaces that can identify users, adapt to the user state, and contribute to the quantified self. At the same time, little is known about users’ perception of this new technology. In this paper, we present findings from a user study (N = 36) in which participants used an electromyography (EMG) wearable and a visualization of data collected from EMG wearables. We found that participants are highly unaware of what EMG data can reveal about them. Allowing them to explore their physiological data makes them more reluctant to share this data. We conclude with deriving guidelines, to help designers of physiological data-based user interfaces to (a) protect users’ privacy, (b) better inform them, and (c) ultimately support the uptake of this technology.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
All sources last accessed June 8, 2021.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
References
Amor, A.B.H., Ghoul, O., Jemni, M.: Toward sign language handshapes recognition using myo armband. In: Proceedings of ICTA 2017, December 2017. https://doi.org/10.1109/ICTA.2017.8336070
Barkuus, L., Dey, A.: Location-based services for mobile telephony: a study of users’ privacy concerns. In: Proceedings of INTERACT 2003 (2003)
Barral, O., et al.: Exploring peripheral physiology as a predictor of perceived relevance in information retrieval. In: Proceedings of IUI 2015 (2015). https://doi.org/10.1145/2678025.2701389
Becker, V., Oldrati, P., Barrios, L., Sörös, G.: Touchsense: classifying finger touches and measuring their force with an electromyography armband. In: Proceedings of ISWC 2018 (2018). https://doi.org/10.1145/3267242.3267250
Bellekens, X., Nieradzinska, K., Bellekens, A., Seeam, P., Hamilton, A., Seeam, A.: A study on situational awareness security and privacy of wearable health monitoring devices. Int. J. Cyber Situational Awareness (2016). https://doi.org/10.22619/IJCSA.2016.100104
Blandford, A., Furniss, D., Makri, S.: Qualitative HCI Research: Going Behind the Scenes. Morgan & Claypool Publishers (2016). https://doi.org/10.2200/S00706ED1V01Y201602HCI034
Blechert, J., Liedlgruber, M., Lender, A., Reichenberger, J., Wilhelm, F.: Unobtrusive electromyography-based eating detection in daily life: a new tool to address underreporting? Appetite (2017). https://doi.org/10.1016/j.appet.2017.08.008
Bonneau, G.-P., et al.: Overview and state-of-the-art of uncertainty visualization. In: Hansen, C.D., Chen, M., Johnson, C.R., Kaufman, A.E., Hagen, H. (eds.) Scientific Visualization. MV, pp. 3–27. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6497-5_1
Brady, E., Morris, M.R., Bigham, J.P.: Gauging receptiveness to social microvolunteering. In: Proceedings of CHI 2015 (2015). https://doi.org/10.1145/2702123.2702329
Brodlie, K., Allendes Osorio, R., Lopes, A.: A review of uncertainty in data visualization. Expanding Front. Visual Anal. Visual. (2012). https://doi.org/10.1007/978-1-4471-2804-5_6
Buschek, D., Hassib, M., Alt, F.: Personal mobile messaging in context: chat augmentations for expressiveness and awareness. ACM Trans. Comput.-Hum. Interact. (2018). https://doi.org/10.1145/3201404
Calo, R.: The boundaries of privacy harm. Indiana Law J. (2011)
Cappellini, G., Ivanenko, Y.P., Poppele, R.E., Lacquaniti, F.: Motor patterns in human walking and running. J. Neurophysiol. (2006). https://doi.org/10.1152/jn.00081.2006
Chen, D., Zhao, H.: Data security and privacy protection issues in cloud computing, March 2012. https://doi.org/10.1109/ICCSEE.2012.193
Chun, K.S., Bhattacharya, S., Thomaz, E.: Detecting eating episodes by tracking jawbone movements with a non-contact wearable sensor. In: Proceedings of the ACM Interaction Mobile Wearable Ubiquitous Technology, March 2018. https://doi.org/10.1145/3191736
Collins, C., Carpendale, S., Penn, G.: Visualization of uncertainty in lattices to support decision-making. In: Proceedings of EUROVIS 2007 (2007). https://doi.org/10.2312/VisSym/EuroVis07/051-058
Correll, M., Gleicher, M.: Error bars considered harmful: exploring alternate encodings for mean and error. IEEE Trans. Visual Comput. Graphics (2014). https://doi.org/10.1109/TVCG.2014.2346298
Finger, R., Bisantz, A.M.: Utilizing graphical formats to convey uncertainty in a decision-making task. Theor. Issues Ergon. Sci. (2002). https://doi.org/10.1080/14639220110110324
Gazendam, M.G., Hof, A.L.: Averaged EMG profiles in jogging and running at different speeds. Gait Posture (2007). https://doi.org/10.1016/j.gaitpost.2006.06.013
Gefen, D., Straub, D.W.: Gender differences in the perception and use of e-mail: an extension to the technology acceptance model. MIS Q. (1997). https://doi.org/10.2307/249720
Ghaisani, A.P., Handayani, P.W., Munajat, Q.: Users’ motivation in sharing information on social media. Procedia Comput. Sci. (2017). https://doi.org/10.1016/j.procs.2017.12.186
Gibert, G., Pruzinec, M., Schultz, T., Stevens, C.: Enhancement of human computer interaction with facial electromyographic sensors. In: Proceedings of OZCHI 2009 (2009). https://doi.org/10.1145/1738826.1738914
Gilroy, S., Porteous, J., Charles, F., Cavazza, M.: Pinter: Interactive storytelling with physiological input. In: Proceedings of IUI 2012 (2012). https://doi.org/10.1145/2166966.2167039
Gneiting, T., Raftery, A.E.: Weather forecasting with ensemble methods. Science (2005). https://doi.org/10.1126/science.1115255
Gorm, N., Shklovski, I.: Sharing steps in the workplace: changing privacy concerns over time. In: Proceedings of CHI 2016 (2016). https://doi.org/10.1145/2858036.2858352
Görtler, J., Schulz, C., Weiskopf, D., Deussen, O.: Bubble treemaps for uncertainty visualization. IEEE Trans. Visual Comput. Graphics (2018). https://doi.org/10.1109/TVCG.2017.2743959
Greis, M., Agroudy, P.E., Schuff, H., Machulla, T., Schmidt, A.: Decision-making under uncertainty: how the amount of presented uncertainty influences user behavior. In: Proceedings of NordiCHI 2016 (2016). https://doi.org/10.1145/2971485.2971535
Greis, M., Joshi, A., Singer, K., Schmidt, A., Machulla, T.: Uncertainty visualization influences how humans aggregate discrepant information. In: Proceedings of CHI 2018 (2018). https://doi.org/10.1145/3173574.3174079
Gschwandtnei, T., Bögl, M., Federico, P., Miksch, S.: Visual encodings of temporal uncertainty: a comparative user study. IEEE Trans. Visual Comput. Graphics (2016). https://doi.org/10.1109/TVCG.2015.2467752
Hakonen, M., Piitulainen, H., Visala, A.: Current state of digital signal processing in myoelectric interfaces and related applications. Biomed. Signal Process. Control (2015). https://doi.org/10.1016/j.bspc.2015.02.009
Harboe, G., Huang, E.M.: Real-world affinity diagramming practices: bridging the paper-digital gap. In: Proceedings of CHI 2015 (2015). https://doi.org/10.1145/2702123.2702561
Hoyle, R., Templeman, R., Armes, S., Anthony, D., Crandall, D., Kapadia, A.: Privacy behaviors of lifeloggers using wearable cameras. In: Proceedings of UbiComp 2014 (2014). https://doi.org/10.1145/2632048.2632079
Huang, C.N., Chen, C.H., Chung, H.Y.: Application of facial electromyography in computer mouse access for people with disabilities. Disabil. Rehabil. (2006). https://doi.org/10.1080/09638280500158349
Jung, M.F., Sirkin, D., Gür, T.M., Steinert, M.: Displayed uncertainty improves driving experience and behavior: the case of range anxiety in an electric car. In: Proceedings of CHI 2015 (2015). https://doi.org/10.1145/2702123.2702479
Kay, M., Kola, T., Hullman, J.R., Munson, S.A.: When (ish) is my bus?: user-centered visualizations of uncertainty in everyday, mobile predictive systems. In: Proceedings of CHI 2016 (2016). https://doi.org/10.1145/2858036.2858558
Kerber, F., Puhl, M., Krüger, A.: User-independent real-time hand gesture recognition based on surface electromyography. In: Proceedings of MobileHCI 2017 (2017). https://doi.org/10.1145/3098279.3098553
Khamis, M., Alt, F.: Privacy and security in augmentation technologies. In: Dingler, T., Niforatos, E. (eds.) Technology-Augmented Perception and Cognition. HIS, pp. 257–279. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-30457-7_8
Kim, J.S., Pan, S.B.: A study on EMG-based biometrics. J. Internet Serv. Inf. Secur. (2017)
Kiss, F., et al.: Runmerge: towards enhanced proprioception for advanced amateur runners. In: Proceedings of DIS 2017 Companion (2017). https://doi.org/10.1145/3064857.3079144
Kräuter, N., Lösing, S., Bauer, G., Schwering, L., Seuter, M.: Supporting safety in cycling groups using led-augmented gestures. In: Proceedings of UbiComp 2016 (2016). https://doi.org/10.1145/2968219.2968573
Kurosawa, H., Sakamoto, D., Ono, T.: Myotilt: a target selection method for smartwatches using the tilting operation and electromyography. In: Proceedings of MobileHCI 2018 (2018). https://doi.org/10.1145/3229434.3229457
Langheinrich, M.: Privacy by design – principles of privacy-aware ubiquitous systems. In: Proceedings of UbiComp 2001 (2001)
Lau, J., Zimmerman, B., Schaub, F.: Alexa, are you listening?: privacy perceptions, concerns and privacy-seeking behaviors with smart speakers. Proc. ACM Hum.-Comput. Interact. (2018). https://doi.org/10.1145/3274371
Lee, L.N., Egelman, S., Lee, J.H., Wagner, D.A.: Risk perceptions for wearable devices. CoRR (2015)
Lee, L.M., Gostin, L.O.: Ethical collection, storage, and use of public health data: a proposal for a national privacy protection. JAMA (2009). https://doi.org/10.1001/jama.2009.958
Li, H., Wu, J., Gao, Y., Shi, Y.: Examining individuals’ adoption of healthcare wearable devices: an empirical study from privacy calculus perspective. Int. J. Med. Informatics (2016). https://doi.org/10.1016/j.ijmedinf.2015.12.010
Malhotra, N.K., Kim, S.S., Agarwal, J.: Internet users’ information privacy concerns (IUIPC): the construct, the scale, and a causal model. Inf. Syst. Res. (2004). https://doi.org/10.1287/isre.1040.0032
McIntosh, J., McNeill, C., Fraser, M., Kerber, F., Löchtefeld, M., Krüger, A.: Empress: practical hand gesture classification with wrist-mounted emg and pressure sensing. In: Proceedings of CHI 2016 (2016). https://doi.org/10.1145/2858036.2858093
Motti, V.G., Caine, K.: Users’ privacy concerns about wearables. In: Brenner, M., Christin, N., Johnson, B., Rohloff, K. (eds.) FC 2015. LNCS, vol. 8976, pp. 231–244. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48051-9_17
Nissenbaum, H.: Privacy in Context: Technology, Policy, and the Integrity of Social Life. Stanford University Press (2009)
Osatuyi, B.: Information sharing on social media sites. Comput. Hum. Behav. (2013). https://doi.org/10.1016/j.chb.2013.07.001
Pang, A.T., Wittenbrink, C.M., Lodha, S.K.: Approaches to uncertainty visualization. Vis. Comput. (1997). https://doi.org/10.1007/s003710050111
Paudyal, P., Banerjee, A., Gupta, S.K.: SCEPTRE: a pervasive, non-invasive, and programmable gesture recognition technology. In: Proceedings of IUI 2016 (2016). https://doi.org/10.1145/2856767.2856794
Paul, G., Irvine, J.: Privacy implications of wearable health devices. In: Proceedings of SIN 2014 (2014). https://doi.org/10.1145/2659651.2659683
Perez, A.J., Zeadally, S.: Privacy issues and solutions for consumer wearables. It Professional (2018)
Prange, S., Shams, A., Piening, R., Abdelrahman, Y., Alt, F.: Priview- exploring visualisations to support users’ privacy awareness. In: Proceedings of CHI 2021 (2021). https://doi.org/10.1145/3411764.3445067
Puussaar, A., Clear, A.K., Wright, P.: Enhancing personal informatics through social sensemaking. In: Proceedings of CHI 2017 (2017). https://doi.org/10.1145/3025453.3025804
Rahman, M., Carbunar, B., Banik, M.: Fit and vulnerable: attacks and defenses for a health monitoring device. arXiv preprint arXiv:1304.5672 (2013)
Reaz, M.B., Hussain, M.S., Mohd-Yasin, F.: Techniques of EMG signal analysis: detection, processing, classification and applications. Biol. Proced. Online (2006). https://doi.org/10.1251/bpo115
Rocher, L., Hendrickx, J.M., de Montjoye, Y.A.: Estimating the success of re-identifications in incomplete datasets using generative models. Nat. Commun. (2019). https://doi.org/10.1038/s41467-019-10933-3
Rogers, Y., Sharp, H., Preece, J.: Interaction Design: Beyond Human - Computer Interaction, 3rd edn. Wiley Publishing (2011)
Sacha, D., Senaratne, H., Kwon, B.C., Ellis, G., Keim, D.A.: The role of uncertainty, awareness, and trust in visual analytics. IEEE Trans. Visual Comput. Graphics (2016). https://doi.org/10.1109/TVCG.2015.2467591
Schaub, F., Balebako, R., Durity, A.L., Cranor, L.F.: A design space for effective privacy notices. In: Proceedings of (2015)
Schneegass, S., Olsson, T., Mayer, S., van Laerhoven, K.: Mobile interactions augmented by wearable computing: a design space and vision. Int. J. Mob. Hum. Comput. Interact. (2016). https://doi.org/10.4018/IJMHCI.2016100106
Schwind, V., Reinhardt, J., Rzayev, R., Henze, N., Wolf, K.: Virtual reality on the go?: A study on social acceptance of VR glasses. In: Proceedings of MobileHCI 2018 (2018). https://doi.org/10.1145/3236112.3236127
Shaer, O., et al.: Genomix: a novel interaction tool for self-exploration of personal genomic data. In: Proceedings of CHI 2016 (2016). https://doi.org/10.1145/2858036.2858397
Shklovski, I., Mainwaring, S.D., Skúladóttir, H.H., Borgthorsson, H.: Leakiness and creepiness in app space: Perceptions of privacy and mobile app use. In: Proceedings of CHI 2014 (2014). https://doi.org/10.1145/2556288.2557421
Solove, D.J.: The Digital Person: Technology and Privacy in the Information Age. NYU Press (2004)
Sun, Y., Wang, N., Shen, X.L., Zhang, J.X.: Location information disclosure in location-based social network services: Privacy calculus, benefit structure, and gender differences. Comput. Hum. Behav. (2015). https://doi.org/10.1016/j.chb.2015.06.006
Tuunainen, V.K., Pitkänen, O., Hovi, M.: Users’ awareness of privacy on online social networking sites - case facebook. BLED (2009)
Voit, A., Mayer, S., Schwind, V., Henze, N.: Online, vr, ar, lab, and in-situ: comparison of research methods to evaluate smart artifacts. In: Proceedings of CHI 2019 (2019). https://doi.org/10.1145/3290605.3300737
Wang, F., Qi, H., Zhou, X., Wang, J., Zeng, Z., Li, R.: Collaboration robotic compliance grasping based on implicit human - computer interaction. In: Proceedings of CCDC 2018, June 2018D. https://doi.org/10.1109/CCDC.2018.8408109
Wijsman, J., Grundlehner, B., Penders, J., Hermens, H.: Trapezius muscle EMG as predictor of mental stress. ACM Trans. Embed. Comput. Syst. (2013). https://doi.org/10.1145/2485984.2485987
Wilkowska, W., Ziefle, M.: Perception of privacy and security for acceptance of e-health technologies: exploratory analysis for diverse user groups. In: Proceedings of IEEE (2011)
Williams, E.J.: Experimental designs balanced for the estimation of residual effects of treatments. Aust. J. Chem. (1949). https://doi.org/10.1071/CH9490149
Wobbrock, J.O., Findlater, L., Gergle, D., Higgins, J.J.: The aligned rank transform for nonparametric factorial analyses using only anova procedures. In: Proceedings of CHI 2011 (2011). https://doi.org/10.1145/1978942.1978963
Wozniak, P.W., Colley, A., Häkkilä, J.: Towards increasing bodily awareness during sports with wearable displays. In: Proceedings of UbiComp 2018 (2018). https://doi.org/10.1145/3267305.3267703
Acknowledgements
The presented work was funded by the German Research Foundation (DFG) under project no. 316457582 and by dtec.bw – Digitalization and Technology Research Center of the Bundeswehr [Voice of Wisdom].
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Prange, S., Mayer, S., Bittl, ML., Hassib, M., Alt, F. (2021). Investigating User Perceptions Towards Wearable Mobile Electromyography. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12935. Springer, Cham. https://doi.org/10.1007/978-3-030-85610-6_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-85610-6_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85609-0
Online ISBN: 978-3-030-85610-6
eBook Packages: Computer ScienceComputer Science (R0)