Skip to main content

Design Guidelines for Collaborative Industrial Robot User Interfaces

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2021 (INTERACT 2021)

Abstract

Collaborative industrial robot (cobot) systems are deployed to automate tasks or as a tool for Human-Robot Interaction (HRI) scenarios, especially for manufacturing applications. A large number of manufacturers of this technology have entered the cobot market in recent years. Manufacturers intend to offer easy control possibilities to make cobots suitable for different user groups, but there are few evaluation tools for assessing user interface (UI) design specifically for cobots. Therefore, we propose a set of design guidelines for cobots based on existing literature on heuristics and cobot UI design. The guidelines were further developed on the basis of modified heuristic evaluations by researchers with robotics expertise, as well as interviews with cobot UI/User Experience (UX) design experts. The resulting design guidelines are intended for identification of usability problems during heuristic evaluation of the UI design of cobot systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Several usability evaluations yielded SUS scores between 50–70 for different cobot systems [8, 31], which has been argued to indicate that a product is marginal in terms of usability and should be improved [3].

References

  1. Adamides, G., Christou, G., Katsanos, C., Xenos, M., Hadzilacos, T.: Usability guidelines for the design of robot teleoperation: a taxonomy. IEEE Trans. Human-Mach. Syst. 45(2), 256–262 (2015). https://doi.org/10.1109/THMS.2014.2371048

    Article  Google Scholar 

  2. Amershi, S., et al.: Guidelines for human-AI interaction. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems - CHI ’19, pp. 1–13. ACM Press (2019). https://doi.org/10.1145/3290605.3300233

  3. Bangor, A., Kortum, P.T., Miller, J.T.: An empirical evaluation of the system usability scale. Int. J. Hum.-Comput. Interact. 24(6), 574–594 (2008). https://doi.org/10.1080/10447310802205776

    Article  Google Scholar 

  4. Bladford, A.: Semi-structured qualitative studies. In: The Encyclopedia of Human-Computer Interaction. The Interaction Design Foundation, 2 edn. (2013). https://www.interaction-design.org/literature/book/the-encyclopedia-of-human-computer-interaction-2nd-ed/semi-structured-qualitative-studies

  5. Clarkson, E., Arkin, R.C.: Applying heuristic evaluation to human-robot interaction systems, American Association for Artificial Intelligence (2007)

    Google Scholar 

  6. drag&bot: Industrieroboter wie ein smartphone bedienen (2020). https://www.dragandbot.com/de/. Accessed 10 Sept 2020

  7. El Zaatari, S., Marei, M., Li, W., Usman, Z.: Cobot programming for collaborative industrial tasks: an overview. Robot. Auton. Syst. 116, 162–180 (2019). https://doi.org/10.1016/j.robot.2019.03.003

    Article  Google Scholar 

  8. Ferraguti, F., Pertosa, A., Secchi, C., Fantuzzi, C., Bonfè, M.: A methodology for comparative analysis of collaborative robots for Industry 4.0. In: 2019 Design, Automation Test in Europe Conference Exhibition (DATE), pp. 1070–1075 (2019). https://doi.org/10.23919/DATE.2019.8714830

  9. Fletcher, S.R., Johnson, T.L., Larreina, J.: Putting people and robots together in manufacturing: are we ready? In: Aldinhas Ferreira, M.I., Silva Sequeira, J., Virk, G.S., Tokhi, M.O., Kadar, E.E. (eds.) Robotics and Well-Being. ISCASE, vol. 95, pp. 135–147. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12524-0_12

    Chapter  Google Scholar 

  10. Franka Emika GmbH: Franka Emika Panda (2020). https://www.franka.de/technology

  11. Hoffman, G., Zhao, X.: A primer for conducting experiments in human-robot interaction. ACM Trans. Hum.-Robot Interact. 10(1), 1–31 (2020). https://doi.org/10.1145/3412374

    Article  Google Scholar 

  12. Ionescu, T.B., Schlund, S.: A participatory programming model for democratizing cobot technology in public and industrial fablabs. Procedia CIRP 81, 93–98 (2019). https://doi.org/10.1016/j.procir.2019.03.017

    Article  Google Scholar 

  13. ISO: ISO 9241–210 Ergonomics of human-system interaction - Part 210: Human-centred design for interactive systems (2010). https://www.sis.se/api/document/preview/912053/

  14. ISO: ISO/TS 15066:2016(en) Robots and robotic devices - Collaborative robots (2016)

    Google Scholar 

  15. Komenda, T.: SAMY - semi-automatische modifikation (2020). https://www.fraunhofer.at/de/forschung/forschungsfelder/SAMY.html. Accessed 10 Sept 2020

  16. Krot, K., Kutia, V.: Intuitive methods of industrial robot programming in advanced manufacturing systems. In: Burduk, A., Chlebus, E., Nowakowski, T., Tubis, A. (eds.) ISPEM 2018. AISC, vol. 835, pp. 205–214. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-97490-3_20

    Chapter  Google Scholar 

  17. KUKA AG: LBR iiwa (2020). https://www.kuka.com/en-de/products/robot-systems/industrial-robots/lbr-iiwa

  18. Lupetti, M.L., Zaga, C., Cila, N.: Designerly ways of knowing in HRI: broadening the scope of design-oriented HRI through the concept of intermediate-level knowledge. In: Proceedings of the 2021 ACM/IEEE International Conference on Human-Robot Interaction. pp. 389–398. ACM, Boulder (2021). https://doi.org/10.1145/3434073.3444668. https://dl.acm.org/doi/10.1145/3434073.3444668

  19. Malik, A.A., Bilberg, A.: Developing a reference model for human–robot interaction. Int. J. Interact. Design Manuf. (IJIDeM) 13(4), 1541–1547 (2019). https://doi.org/10.1007/s12008-019-00591-6

    Article  Google Scholar 

  20. Marvel, J.A., Bagchi, S., Zimmerman, M., Antonishek, B.: Towards effective interface designs for collaborative HRI in manufacturing: metrics and measures. ACM Trans. Hum.-Robot Interact. 9(4), 1–55 (2020). https://doi.org/10.1145/3385009

    Article  Google Scholar 

  21. Maurice, P., Allienne, L., Malaise, A., Ivaldi, S.: Ethical and Social Considerations for the Introduction of Human-Centered Technologies at Work. In: 2018 IEEE Workshop on Advanced Robotics and its Social Impacts (ARSO). pp. 131–138. IEEE, Genova (2018). https://doi.org/10.1109/ARSO.2018.8625830

  22. MAXQDA, VERBI GmbH: MAXQDA—All-In-One Qualitative & Mixed Methods Data Analysis Tool (2020). https://www.maxqda.com/

  23. Michaelis, J.E., Siebert-Evenstone, A., Shaffer, D.W., Mutlu, B.: Collaborative or simply uncaged? understanding human-cobot interactions in automation. In: Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, pp. 1–12. ACM (2020). https://doi.org/10.1145/3313831.3376547

  24. Murphy, R.R., Tadokoro, S.: User interfaces for human-robot interaction in field robotics. In: Tadokoro, S. (ed.) Disaster Robotics. STAR, vol. 128, pp. 507–528. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-05321-5_11

    Chapter  Google Scholar 

  25. Naumann, A.: Intuitive use of user interfaces: defining a vague concept. In: Harris, D. (ed.) EPCE 2007. LNCS (LNAI), vol. 4562, pp. 128–136. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73331-7_14

    Chapter  Google Scholar 

  26. Nielsen, J.: Enhancing the explanatory power of usability heuristics. In: CHI ’94: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 152–158 (1994). https://doi.org/10.1145/191666.191729

  27. Paxton, C., Hundt, A., Jonathan, F., Guerin, K., Hager, G.D.: CoSTAR: instructing collaborative robots with behavior trees and vision. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 564–571 (2017). https://doi.org/10.1109/ICRA.2017.7989070

  28. Pilotfabrik TU Wien: Pilot Factory TU Vienna - Industry 4.0 (2021). https://www.pilotfabrik.at/?lang=en

  29. Quiñones, D., Rusu, C.: How to develop usability heuristics: a systematic literature review. Comput. Stand. Interfaces 53, 89–122 (2017). https://doi.org/10.1016/j.csi.2017.03.009

    Article  Google Scholar 

  30. Robotiq: Products: Grippers, Camera and Force Torque Sensors (2021). https://robotiq.com/products

  31. Schmidbauer, C., Komenda, T., Schlund, S.: Teaching cobots in learning factories - user and usability-driven implications. Procedia Manuf. 45, 398–404 (2020). https://doi.org/10.1016/j.promfg.2020.04.043

    Article  Google Scholar 

  32. Steinmetz, F., Wollschläger, A., Weitschat, R.: RAZER-a HRI for visual task-level programming and intuitive skill parameterization. IEEE Robot. Autom. Lett. 3(3), 1362–1369 (2018). https://doi.org/10.1109/LRA.2018.2798300

    Article  Google Scholar 

  33. The European Parliament and the Council of the European Union: Directive 2006/42/EC of the European Parliament and of the Council of 17 May 2006 on machinery, and amending Directive 95/16/EC (recast). Official Journal of the European Union (2006). https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:157:0024:0086:EN:PDF

  34. Tsui, K.M., Abu-Zahra, K., Casipe, R., M’Sadoques, J., Drury, J.L.: Developing heuristics for assistive robotics. In: 2010 5th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pp. 193–194 (2010). https://doi.org/10.1109/HRI.2010.5453198

  35. Universal Robots: UR5 collaborative robot arm—flexible and lightweight robot arm (2019). https://www.universal-robots.com/products/ur5-robot/

  36. Villani, V., Pini, F., Leali, F., Secchi, C.: Survey on human-robot collaboration in industrial settings: safety, intuitive interfaces and applications. Mechatronics 55, 248–266 (2018). https://doi.org/10.1016/j.mechatronics.2018.02.009

    Article  Google Scholar 

  37. Weintrop, D., Afzal, A., Salac, J., Francis, P., Li, B., Shepherd, D.C., Franklin, D.: Evaluating CoBlox: a comparative study of robotics programming environments for adult novices. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 1–12. ACM, Montreal (2018). https://doi.org/10.1145/3173574.3173940

  38. Weiss, A., Wurhofer, D., Bernhaupt, R., Altmaninger, M., Tscheligi, M.: A methodological adaptation for heuristic evaluation of HRI. In: 19th International Symposium in Robot and Human Interactive Communication, pp. 1–6. IEEE (2010). https://doi.org/10.1109/ROMAN.2010.5598735

Download references

Acknowledgements

Supported by Doctoral College TrustRobots, TU Wien. The first author of this publication was responsible for the research project and writing of the publication, and was supported by the second author. We thank Hans Küffner-McCauley, Tanja Zigaert, Michael Hornáček, all paper reviewers, evaluation study participants, and interviewees.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Anna Frijns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Frijns, H.A., Schmidbauer, C. (2021). Design Guidelines for Collaborative Industrial Robot User Interfaces. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12934. Springer, Cham. https://doi.org/10.1007/978-3-030-85613-7_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85613-7_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85612-0

  • Online ISBN: 978-3-030-85613-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics