Skip to main content

VizInteract: Rapid Data Exploration Through Multi-touch Interaction with Multi-dimensional Visualizations

  • Conference paper
  • First Online:
Human-Computer Interaction – INTERACT 2021 (INTERACT 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12934))

Included in the following conference series:

Abstract

Creating and editing multi-dimensional data visualizations with current tools typically involves complex interactions. We present VizInteract, an interactive data visualization tool for touch-enabled displays. VizInteract supports efficient multi-touch data exploration through rapid construction of and interaction with multi-dimensional data visualizations. Building on primitive visualization idioms like histograms, VizInteract addresses the need for easy data exploration by facilitating the construction of multi-dimensional visualizations, such as scatter plots, parallel coordinate plots, radar charts, and scatter plot matrices, through simple multi-touch actions. Touch-based brushing-and-linking as well as attribute-based filter bubbles support “diving into the data” during analysis. We present the results of two explorative studies, one on a tablet and another on a large touchscreen and analyze the usage patterns that emerge while participants conducted visual analytics data exploration tasks in both conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agarwal, M., et al.: VisWall: visual data exploration using direct combination on large touch displays (2019)

    Google Scholar 

  2. Ahlberg, C., Shneiderman, B.: Visual information seeking: tight coupling of dynamic query filters with starfield displays. In: The Craft of Information Visualization, pp. 7–13. Elsevier (2003). https://doi.org/10.1016/B978-155860915-0/50004-4

  3. Amar, R., et al.: Low-level components of analytic activity in information visualization. In: IEEE Symposium on Information Visualization, 2005. INFOVIS 2005 (2005). https://doi.org/10.1109/INFVIS.2005.1532136

  4. Andrews, C., et al.: Information visualization on large, high-resolution displays: issues, challenges, and opportunities. Inf. Vis. 10(4), 341–355 (2011). https://doi.org/10.1177/1473871611415997

    Article  Google Scholar 

  5. Andrews, C., et al.: Space to think. In: Proceedings of the 28th international conference on Human factors in computing systems - CHI 2010, p. 55 ACM Press, New York, New York, USA (2010). https://doi.org/10.1145/1753326.1753336

  6. Baur, D., et al.: TouchWave: kinetic multi-touch manipulation for hierarchical stacked graphs. In: Proceedings of the 2012 ACM International Conference on Interactive Tabletops Surfaces, pp. 255–264 (2012). https://doi.org/10.1145/2396636.2396675

  7. Becker, R.A., Cleveland, W.S.: Brushing scatterplots. Technometrics 29(2), 127–142 (1987)

    Article  MathSciNet  Google Scholar 

  8. Bikakis, N., Sellis, T.: Exploration and visualization in the web of big linked data: a survey of the state of the art. In: CEUR Workshop Proceedings, p. 1558 (2016)

    Google Scholar 

  9. Brooke, J.: SUS-A quick and dirty usability scale. Usability Eval. Ind. 189, 4–7 (1996)

    Google Scholar 

  10. Browne, J., et al.: Data analysis on interactive whiteboards through sketch-based interaction. In: Proceedings of the ACM International Conference on Interactive Tabletops Surfaces - ITS 2011, December 2014, p. 154 (2011). https://doi.org/10.1145/2076354.2076383

  11. Claessen, J.H.T., Van Wijk, J.J.: Flexible linked axes for multivariate data visualization. IEEE Trans. Vis. Comput. Graph. 17(12), 2310–2316 (2011). https://doi.org/10.1109/TVCG.2011.201

    Article  Google Scholar 

  12. Cleveland, W.S., McGill, R.: The many faces of a scatterplot. J. Am. Stat. Assoc. 79(388), 807–822 (1984). https://doi.org/10.1080/01621459.1984.10477098

    Article  MathSciNet  Google Scholar 

  13. Cook, K.A., Thomas, J.J.: Illuminating the path: The research and development agenda for visual analytics (2005)

    Google Scholar 

  14. Cordeil, M., et al.: ImAxes. In: Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology - UIST 2017, pp. 71–83 (2017). https://doi.org/10.1145/3126594.3126613

  15. Creswell, J.W.: Chapter One, “A Framework for Design”. Research Design: Qualitative, Quantitative, and Mixed Methods Approaches, pp. 3–26 (2003). https://doi.org/10.3109/08941939.2012.723954

  16. Crotty, A., et al.: Vizdom : interactive analytics through pen and touch. In: Proceedings of the 41st International Conference on Very Large Data Bases, vol. 8, no. 12, pp. 2024–2027 (2015). https://doi.org/10.14778/2824032.2824127

  17. Crotty, A., et al.: Vizdom: interactive analytics through pen and touch. In: Proceedings of the VLDB Endow 8, no. 12, pp. 2024–2027 (2015). https://doi.org/10.14778/2824032.2824127

  18. van Dam, A.: Post-WIMP user interfaces. Commun. ACM. 40(2), 63–67 (1997). https://doi.org/10.1145/253671.253708

    Article  MathSciNet  Google Scholar 

  19. Drucker, S.M. et al.: TouchViz: a case study comparing two interfaces for data analytics on tablets. Proc. SIGCHI Conference on Human Factors in Computing Systems, pp. 2301–2310 (2013). https://doi.org/10.1145/2470654.2481318

  20. Dunne, C., et al.: GraphTrail. In: Proceedings of the 2012 ACM annual conference on Human Factors in Computing Systems - CHI 2012, p. 1663. ACM Press, New York, New York, USA (2012). https://doi.org/10.1145/2207676.2208293

  21. Elmqvist, N., et al.: DataMeadow: a visual canvas for analysis of large-scale multivariate data. In: VAST IEEE Symposium on Visual Analytics Science and Technology 2007, Proceedings January, pp. 187–194 (2007). https://doi.org/10.1109/VAST.2007.4389013

  22. Fonnet, A., et al.: Axes and coordinate systems representations for immersive analytics of multi-dimensional data. In: Proceedings of the 4th International Symposium on Big Data Visual and Immersive Analytics, pp. 91–100 (2018). https://doi.org/10.1109/BDVA.2018.8533892

  23. Friendly, M., Kwan, E.: Effect ordering for data displays. Comput. Stat. Data Anal. 43(4), 509–539 (2003). https://doi.org/10.1016/S0167-9473(02)00290-6

    Article  MathSciNet  MATH  Google Scholar 

  24. Grammel, L., et al.: How information visualization novices construct visualizations. IEEE Trans. Vis. Comput. Graph. 16(6), 943–952 (2010). https://doi.org/10.1109/TVCG.2010.164

    Article  Google Scholar 

  25. Hinckley, K., et al.: Pen + touch = new tools. In: Proceedings of the 23nd Annual ACM Symposium on User Interface Software and Technology - UIST 2010, p. 27 (2010). https://doi.org/10.1145/1866029.1866036

  26. Holland, S., Oppenheim, D.: Direct combination, pp. 262–269 (2003). https://doi.org/10.1145/302979.303057

  27. Holten, D., Van Wijk, J.J.: Evaluation of cluster identification performance for different PCP variants. Comput. Graph. Forum. 29(3), 793–802 (2010). https://doi.org/10.1111/j.1467-8659.2009.01666.x

    Article  Google Scholar 

  28. Huang, D., et al.: Personal visualization and personal visual analytics. IEEE Trans. Vis. Comput. Graph. 21(3), 420–433 (2015). https://doi.org/10.1109/TVCG.2014.2359887

    Article  Google Scholar 

  29. Inselberg, A.: Multidimensional detective. In: Proceedings of the VIZ 1997 Visualization Conference, Information Visualization Symposium and Parallel Rendering Symposium, pp. 100–107 (1997). https://doi.org/10.1109/INFVIS.1997.636793

  30. Isenberg, P., et al.: Data visualization on interactive surfaces: a research agenda. IEEE Comput. Graph. Appl. 33(2), 16–24 (2013). https://doi.org/10.1109/MCG.2013.24

    Article  Google Scholar 

  31. Jo, J., et al.: TouchPivot: blending wimp & post-wimp interfaces for data exploration on tablet devices. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems - CHI 2017, pp. 2660–2671 (2017). https://doi.org/10.1145/3025453.3025752

  32. Kosara, R., et al.: Parallel sets: interactive exploration and visual analysis of categorical data. IEEE Trans. Vis. Comput. Graph. 12(4), 558–568 (2006). https://doi.org/10.1109/TVCG.2006.76

    Article  Google Scholar 

  33. Langner, R., et al.: VisTiles: coordinating and combining co-located mobile devices for visual data exploration. IEEE Trans. Vis. Comput. Graph. 24(1), 626–636 (2018). https://doi.org/10.1109/TVCG.2017.2744019

    Article  MathSciNet  Google Scholar 

  34. Lee, B., et al.: Beyond mouse and keyboard: expanding design considerations for information visualization interactions. IEEE Trans. Vis. Comput. Graph. 12, 2689–2697 (2012)

    Article  Google Scholar 

  35. Lee, B., et al.: SketchInsight: natural data exploration on interactive whiteboards leveraging pen and touch interaction. In: IEEE Pacific Visualization Symposium 2015-July, Figure 1, pp. 199–206 (2015). https://doi.org/10.1109/PACIFICVIS.2015.7156378

  36. Lehmann, D.J., et al.: Selecting coherent and relevant plots in large scatterplot matrices. Comput. Graph. Forum. 31(6), 1895–1908 (2012). https://doi.org/10.1111/j.1467-8659.2012.03069.x

    Article  Google Scholar 

  37. Liu, Z., et al.: Data illustrator. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems - CHI 2018, pp. 1–13. ACM Press, New York, New York, USA (2018). https://doi.org/10.1145/3173574.3173697

  38. Mackinlay, J.: Automating the design of graphical presentations of relational information. ACM Trans. Graph. 5(2), 110–141 (1986). https://doi.org/10.1145/22949.22950

    Article  Google Scholar 

  39. Martin, A.R., Ward, M.O.: High dimensional brushing for interactive exploration of multivariate data. In: Proceedings of the Visualization 1995. June, p. 271 (2014). https://doi.org/10.1109/VISUAL.1995.485139

  40. Méndez, G.G., et al.: iVoLVER: interactive visual language for visualization extraction and reconstruction. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 4073–4085 (2016). https://doi.org/10.1145/2858036.2858435

  41. El Meseery, M., et al.: Multiple Workspaces in Visual Analytics. 2018 International Symposium on Big Data Visual and Immersive Analytics BDVA 2018, pp 1–12 (2018). https://doi.org/10.1109/BDVA.2018.8534019

  42. North, C., Shneiderman, B.: Snap-together visualization. In: Proceedings of the Working Conference on Advanced Visual Interfaces - AVI 2000, pp. 128–135. ACM Press, New York, New York, USA (2000). https://doi.org/10.1145/345513.345282

  43. Perry, D., et al.: VizDeck: streamlining exploratory visual analytics of scientific data. In: iConference 2013, pp. 338–350 (2013). https://doi.org/10.9776/13206

  44. Ren, D., et al.: Charticulator: interactive construction of bespoke chart layouts. IEEE Trans. Vis. Comput. Graph. 25(1), 789–799 (2018). https://doi.org/10.1109/TVCG.2018.2865158

    Article  Google Scholar 

  45. Rzeszotarski, J.M., Kittur, A.: Kinetica. In: Proceedings of the 32nd Annual ACM Conference on Human Factors in Computing Systems - CHI 2014, pp. 897–906 (2014). https://doi.org/10.1145/2556288.2557231

  46. Sadana, R., et al.: OnSet: a visualization technique for large-scale binary set data. IEEE Trans. Vis. Comput. Graph. 20(12), 1993–2002 (2014). https://doi.org/10.1109/TVCG.2014.2346249

    Article  Google Scholar 

  47. Sadana, R., et al.: Touching Data: A Discoverability-based Evaluation of a Visualization Interface for Tablet Computers (2018). arXiv:1806.06084v1

  48. Sadana, R., Stasko, J.: Designing and implementing an interactive scatterplot visualization for a tablet computer. In: Proceedings of the 2014 International Working Conference on Advanced Visual Interfaces - AVI 2014, pp. 265–272 (2014). https://doi.org/10.1145/2598153.2598163

  49. Sadana, R., Stasko, J.: Designing multiple coordinated visualizations for tablets. Comput. Graph. Forum. 35(3), 261–270 (2016). https://doi.org/10.1111/cgf.12902

    Article  Google Scholar 

  50. Scott, S.D., et al.: Territoriality in collaborative tabletop workspaces. In: Proceedings of the ACM Conference on Computer Supported Cooperative Work CSCW, pp. 294–303 (2004). https://doi.org/10.1145/1031607.1031655

  51. Tukey, J.W., Tukey, P.A.: The Collected Works of John W. Tukey: Graphics: 1965–1985. CRC Press, Boca Raton (1988)

    Google Scholar 

  52. Walny, J., et al.: Understanding pen and touch interaction for data exploration on interactive whiteboards. IEEE Trans. Vis. Comput. Graph. 18(12), 2779–2788 (2012). https://doi.org/10.1109/TVCG.2012.275

    Article  Google Scholar 

  53. Wong, P.C., Bergeron, R.D.: 30 Years of multidimensional multivariate visualization. In: Scientific Visualization: Overviews, Methodologies, and Techniques Proceedings, pp. 3–33 (1997)

    Google Scholar 

  54. Wongsuphasawat, K., et al.: Voyager: exploratory analysis via faceted browsing of visualization recommendations. IEEE Trans. Vis. Comput. Graph. 22(1), 649–658 (2016). https://doi.org/10.1109/TVCG.2015.2467191

    Article  Google Scholar 

  55. Wongsuphasawat, K., et al.: Voyager 2. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems - CHI 2017, pp. 2648–2659 (2017). https://doi.org/10.1145/3025453.3025768

  56. Yee, K.-P., et al.: Faceted metadata for image search and browsing. In: Proceedings of the conference on Human factors in computing systems - CHI 2003, p. 401. ACM Press, New York, New York, USA (2003). https://doi.org/10.1145/642611.642681

  57. Zgraggen, E., et al.: PanoramicData: data analysis through pen touch. IEEE Trans. Vis. Comput. Graph. 20(12), 2112–2121 (2014). https://doi.org/10.1109/TVCG.2014.2346293

    Article  Google Scholar 

  58. D3.js. https://d3js.org/

  59. Introduction to Statistical Learning. http://www-bcf.usc.edu/~gareth/ISL/data.html. Accessed 17 Jan 2019

  60. Microsoft Excel spreadsheet software. https://products.office.com/en-ca/excel. Accessed 13 Jan 2019

  61. Tableau - Business Intelligence and Analytics Software. https://www.tableau.com/. Accessed 13 Jan 2019

  62. Video Games Sales 2019 | Kaggle. https://www.kaggle.com/ashaheedq/video-games-sales-2019. Accessed 19 Sep 2019

  63. VTK - The Visualization Toolkit. https://vtk.org/. Accessed 13 Jan 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang Stuerzlinger .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 84801 kb)

Appendix

Appendix

A1. Tasks for Study II (Table 3).

Table 3. Tasks for Study II.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakraborty, S., Stuerzlinger, W. (2021). VizInteract: Rapid Data Exploration Through Multi-touch Interaction with Multi-dimensional Visualizations. In: Ardito, C., et al. Human-Computer Interaction – INTERACT 2021. INTERACT 2021. Lecture Notes in Computer Science(), vol 12934. Springer, Cham. https://doi.org/10.1007/978-3-030-85613-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85613-7_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85612-0

  • Online ISBN: 978-3-030-85613-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics