Abstract
Pairwise sequence alignment is an important application to identify regions of similarity that may indicate the relationship between two biological sequences. This is a computationally intensive task that usually requires parallel processing to provide realistic execution times. This work introduces a new framework for a deadline constrained application of sequence alignment, called MASA-CUDAlign, that exploits cloud computing with Spot GPU instances. Although much cheaper than On-Demand instances, Spot GPUs can be revoked at any time, so the framework is also able to restart MASA-CUDAlign from a checkpoint in a new instance when a revocation occurs. We evaluate the proposed framework considering five pairs of DNA sequences and different AWS instances. Our results show that the framework reduces financial costs when compared to On-Demand GPU instances while meeting the deadlines even in scenarios with several instances revocations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahrens, J.H., Dieter, U.: Computer methods for sampling from gamma, beta, poisson and bionomial distributions. Computing 12(3), 223–246 (1974)
Barr, J.: New EC2 instance type - the cluster GPU instance (2010). https://aws.amazon.com/pt/blogs/aws/new-ec2-instance-type-the-cluster-gpu-instance/. Accessed 01 Feb 2021
Batista, R.B., Boukerche, A., de Melo, A.C.M.A.: A parallel strategy for biological sequence alignment in restricted memory space. J. Parallel Distrib. Comput. 68(4), 548–561 (2008)
Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol. 162(3), 705–708 (1982)
Huang, X., Li, C., Chen, H., An, D.: Task scheduling in cloud computing using particle swarm optimization with time varying inertia weight strategies. Cluster Comput. 23(2), 1137–1147 (2019). https://doi.org/10.1007/s10586-019-02983-5
Jain, T., Cooperman, G.: CRAC: checkpoint-restart architecture for CUDA with streams and UVM. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2020. IEEE Press (2020)
Jiang, X., Liu, X., Xu, L., Zhang, P., Sun, N.: A reconfigurable accelerator for Smith-Waterman algorithm. IEEE Trans. Circ. Syst. II Exp. Brief. 54(12), 1077–1081 (2007)
Lee, K., Son, M.: DeepSpotCloud: leveraging cross-region GPU spot instances for deep learning. In: 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), pp. 98–105 (2017)
Lee, S., Lin, C., Hung, C.L., Huang, H.Y.: Using frequency distance filteration for reducing database search workload on GPU-based cloud service. In: 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, pp. 735–740 (2012)
Lee, S.T., Lin, C.Y., Hung, C.L.: GPU-based cloud service for Smith-Waterman Algorithm using frequency distance filtration scheme. BioMed Res. Int. 2013, 721738 (2013)
Lu, Y., Sun, N.: An effective task scheduling algorithm based on dynamic energy management and efficient resource utilization in green cloud computing environment. Clust. Comput. 22(1), 513–520 (2019)
Myers, E.W., Miller, W.: Optimal alignments in linear space. Comp. App. in Biosci. 4(1), 11–17 (1988)
National Center for Biotechnological Information. https://www.ncbi.nlm.nih.gov/
Pary, R.: New Amazon EC2 spot pricing model: simplified purchasing without bidding and fewer interruptions (2017). https://aws.amazon.com/pt/blogs/compute/new-amazon-ec2-spot-pricing/. Accessed 01 Feb 2021
Sánchez, F., Cabarcas, F., Ramirez, A., Valero, M.: Long DNA sequence comparison on multicore architectures. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6272, pp. 247–259. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15291-7_24
Sandes, E.F.O., Melo, A.C.M.A.: Retrieving Smith-Waterman alignments with optimizations for megabase biological sequences using GPU. IEEE Trans Parallel Dist. Syst. 24(5), 1009–1021 (2013)
Sandes, E.F.O., Miranda, G., Martorell, X., Ayguade, E., Teodoro, G., Melo, A.C.M.A.: MASA: a multiplatform architecture for sequence aligners with block pruning. ACM Trans. Parallel Comput. 2(4), 1–31 (2016)
Sandes, E.F.O., et al.: CUDAlign 4.0: incremental speculative traceback for exact chromosome-wide alignment in GPU clusters. IEEE Trans. Parallel Dist. Syst. 27(10), 2838–2850 (2016)
Services, A.W.: Boto 3 Documentation (2021). https://boto3.readthedocs.io/. Accessed 03 Feb 2021
Services, A.W.: User Guide for Linux Instances - spot instance interruptions (2021). https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html. Accessed 03 Feb 2021
Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981)
Teylo, L., Arantes, L., Sens, P., Drummond, L.M.A.: A bag-of-tasks scheduler tolerant to temporal failures in clouds. In: 31st International Symposium on Computer Architecture and High Performance Computing, pp. 144–151 (2019)
Teylo, L., Arantes, L., Sens, P., Drummond, L.M.: A dynamic task scheduler tolerant to multiple hibernations in cloud environments. Cluster Comput. 27, 1–23 (2020)
Teylo, L., Brum, R.C., Arantes, L., Sens, P., Drummond, L.M.A.: Developing checkpointing and recovery procedures with the storage services of Amazon web services. In: Proceedings of the 49th International Conference on Parallel Processing: Workshops (2020)
Varshney, P., Simmhan, Y.: AutoBoT: resilient and cost-effective scheduling of a bag of tasks on spot VMs. IEEE Trans. Parallel Distrib. Syst. 30(7), 1512–1527 (2019)
Wagenländer, M., Mai, L., Li, G., Pietzuch, P.: Spotnik: designing distributed machine learning for transient cloud resources. In: 12th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud 2020. USENIX Association (July 2020)
Zhou, J., Zhang, Y., Wong, W.: Fault tolerant stencil computation on cloud-based GPU spot instances. IEEE Trans. Cloud Comput. 7(4), 1013–1024 (2019)
Acknowledgments
This research is supported by project CNPq/AWS 440014/2020-4, Brazil, by the Programa Institucional de Internacionalização (PrInt) from CAPES (process number 88887.310261/2018-00) and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (process 145088/2019-7).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Brum, R.C., Sousa, W.P., Melo, A.C.M.A., Bentes, C., de Castro, M.C.S., Drummond, L.M.d.A. (2021). A Fault Tolerant and Deadline Constrained Sequence Alignment Application on Cloud-Based Spot GPU Instances. In: Sousa, L., Roma, N., Tomás, P. (eds) Euro-Par 2021: Parallel Processing. Euro-Par 2021. Lecture Notes in Computer Science(), vol 12820. Springer, Cham. https://doi.org/10.1007/978-3-030-85665-6_20
Download citation
DOI: https://doi.org/10.1007/978-3-030-85665-6_20
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85664-9
Online ISBN: 978-3-030-85665-6
eBook Packages: Computer ScienceComputer Science (R0)