Skip to main content

A Fault Tolerant and Deadline Constrained Sequence Alignment Application on Cloud-Based Spot GPU Instances

  • Conference paper
  • First Online:
Euro-Par 2021: Parallel Processing (Euro-Par 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12820))

Included in the following conference series:

  • 2058 Accesses

Abstract

Pairwise sequence alignment is an important application to identify regions of similarity that may indicate the relationship between two biological sequences. This is a computationally intensive task that usually requires parallel processing to provide realistic execution times. This work introduces a new framework for a deadline constrained application of sequence alignment, called MASA-CUDAlign, that exploits cloud computing with Spot GPU instances. Although much cheaper than On-Demand instances, Spot GPUs can be revoked at any time, so the framework is also able to restart MASA-CUDAlign from a checkpoint in a new instance when a revocation occurs. We evaluate the proposed framework considering five pairs of DNA sequences and different AWS instances. Our results show that the framework reduces financial costs when compared to On-Demand GPU instances while meeting the deadlines even in scenarios with several instances revocations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahrens, J.H., Dieter, U.: Computer methods for sampling from gamma, beta, poisson and bionomial distributions. Computing 12(3), 223–246 (1974)

    Article  MathSciNet  Google Scholar 

  2. Barr, J.: New EC2 instance type - the cluster GPU instance (2010). https://aws.amazon.com/pt/blogs/aws/new-ec2-instance-type-the-cluster-gpu-instance/. Accessed 01 Feb 2021

  3. Batista, R.B., Boukerche, A., de Melo, A.C.M.A.: A parallel strategy for biological sequence alignment in restricted memory space. J. Parallel Distrib. Comput. 68(4), 548–561 (2008)

    Article  Google Scholar 

  4. Gotoh, O.: An improved algorithm for matching biological sequences. J. Mol. Biol. 162(3), 705–708 (1982)

    Article  Google Scholar 

  5. Huang, X., Li, C., Chen, H., An, D.: Task scheduling in cloud computing using particle swarm optimization with time varying inertia weight strategies. Cluster Comput. 23(2), 1137–1147 (2019). https://doi.org/10.1007/s10586-019-02983-5

    Article  Google Scholar 

  6. Jain, T., Cooperman, G.: CRAC: checkpoint-restart architecture for CUDA with streams and UVM. In: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2020. IEEE Press (2020)

    Google Scholar 

  7. Jiang, X., Liu, X., Xu, L., Zhang, P., Sun, N.: A reconfigurable accelerator for Smith-Waterman algorithm. IEEE Trans. Circ. Syst. II Exp. Brief. 54(12), 1077–1081 (2007)

    Article  Google Scholar 

  8. Lee, K., Son, M.: DeepSpotCloud: leveraging cross-region GPU spot instances for deep learning. In: 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), pp. 98–105 (2017)

    Google Scholar 

  9. Lee, S., Lin, C., Hung, C.L., Huang, H.Y.: Using frequency distance filteration for reducing database search workload on GPU-based cloud service. In: 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings, pp. 735–740 (2012)

    Google Scholar 

  10. Lee, S.T., Lin, C.Y., Hung, C.L.: GPU-based cloud service for Smith-Waterman Algorithm using frequency distance filtration scheme. BioMed Res. Int. 2013, 721738 (2013)

    Google Scholar 

  11. Lu, Y., Sun, N.: An effective task scheduling algorithm based on dynamic energy management and efficient resource utilization in green cloud computing environment. Clust. Comput. 22(1), 513–520 (2019)

    Article  MathSciNet  Google Scholar 

  12. Myers, E.W., Miller, W.: Optimal alignments in linear space. Comp. App. in Biosci. 4(1), 11–17 (1988)

    Google Scholar 

  13. National Center for Biotechnological Information. https://www.ncbi.nlm.nih.gov/

  14. Pary, R.: New Amazon EC2 spot pricing model: simplified purchasing without bidding and fewer interruptions (2017). https://aws.amazon.com/pt/blogs/compute/new-amazon-ec2-spot-pricing/. Accessed 01 Feb 2021

  15. Sánchez, F., Cabarcas, F., Ramirez, A., Valero, M.: Long DNA sequence comparison on multicore architectures. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par 2010. LNCS, vol. 6272, pp. 247–259. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15291-7_24

    Chapter  Google Scholar 

  16. Sandes, E.F.O., Melo, A.C.M.A.: Retrieving Smith-Waterman alignments with optimizations for megabase biological sequences using GPU. IEEE Trans Parallel Dist. Syst. 24(5), 1009–1021 (2013)

    Article  Google Scholar 

  17. Sandes, E.F.O., Miranda, G., Martorell, X., Ayguade, E., Teodoro, G., Melo, A.C.M.A.: MASA: a multiplatform architecture for sequence aligners with block pruning. ACM Trans. Parallel Comput. 2(4), 1–31 (2016)

    Article  Google Scholar 

  18. Sandes, E.F.O., et al.: CUDAlign 4.0: incremental speculative traceback for exact chromosome-wide alignment in GPU clusters. IEEE Trans. Parallel Dist. Syst. 27(10), 2838–2850 (2016)

    Article  Google Scholar 

  19. Services, A.W.: Boto 3 Documentation (2021). https://boto3.readthedocs.io/. Accessed 03 Feb 2021

  20. Services, A.W.: User Guide for Linux Instances - spot instance interruptions (2021). https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-interruptions.html. Accessed 03 Feb 2021

  21. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. J. Mol. Biol. 147(1), 195–197 (1981)

    Article  Google Scholar 

  22. Teylo, L., Arantes, L., Sens, P., Drummond, L.M.A.: A bag-of-tasks scheduler tolerant to temporal failures in clouds. In: 31st International Symposium on Computer Architecture and High Performance Computing, pp. 144–151 (2019)

    Google Scholar 

  23. Teylo, L., Arantes, L., Sens, P., Drummond, L.M.: A dynamic task scheduler tolerant to multiple hibernations in cloud environments. Cluster Comput. 27, 1–23 (2020)

    Google Scholar 

  24. Teylo, L., Brum, R.C., Arantes, L., Sens, P., Drummond, L.M.A.: Developing checkpointing and recovery procedures with the storage services of Amazon web services. In: Proceedings of the 49th International Conference on Parallel Processing: Workshops (2020)

    Google Scholar 

  25. Varshney, P., Simmhan, Y.: AutoBoT: resilient and cost-effective scheduling of a bag of tasks on spot VMs. IEEE Trans. Parallel Distrib. Syst. 30(7), 1512–1527 (2019)

    Article  Google Scholar 

  26. Wagenländer, M., Mai, L., Li, G., Pietzuch, P.: Spotnik: designing distributed machine learning for transient cloud resources. In: 12th USENIX Workshop on Hot Topics in Cloud Computing, HotCloud 2020. USENIX Association (July 2020)

    Google Scholar 

  27. Zhou, J., Zhang, Y., Wong, W.: Fault tolerant stencil computation on cloud-based GPU spot instances. IEEE Trans. Cloud Comput. 7(4), 1013–1024 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This research is supported by project CNPq/AWS 440014/2020-4, Brazil, by the Programa Institucional de Internacionalização (PrInt) from CAPES (process number 88887.310261/2018-00) and by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (process 145088/2019-7).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafaela C. Brum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brum, R.C., Sousa, W.P., Melo, A.C.M.A., Bentes, C., de Castro, M.C.S., Drummond, L.M.d.A. (2021). A Fault Tolerant and Deadline Constrained Sequence Alignment Application on Cloud-Based Spot GPU Instances. In: Sousa, L., Roma, N., Tomás, P. (eds) Euro-Par 2021: Parallel Processing. Euro-Par 2021. Lecture Notes in Computer Science(), vol 12820. Springer, Cham. https://doi.org/10.1007/978-3-030-85665-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85665-6_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85664-9

  • Online ISBN: 978-3-030-85665-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics