Skip to main content

GPU-Accelerated Mahalanobis-Average Hierarchical Clustering Analysis

  • Conference paper
  • First Online:
Euro-Par 2021: Parallel Processing (Euro-Par 2021)

Abstract

Hierarchical clustering is a common tool for simplification, exploration, and analysis of datasets in many areas of research. For data originating in flow cytometry, a specific variant of agglomerative clustering based Mahalanobis-average linkage has been shown to produce results better than the common linkages. However, the high complexity of computing the distance limits the applicability of the algorithm to datasets obtained from current equipment. We propose an optimized, GPU-accelerated open-source implementation of the Mahalanobis-average hierarchical clustering that improves the algorithm performance by over two orders of magnitude, thus allowing it to scale to the large datasets. We provide a detailed analysis of the optimizations and collected experimental results that are also portable to other hierarchical clustering algorithms; and demonstrate the use on realistic high-dimensional datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/asmelko/gmhc.

  2. 2.

    https://rdrr.io/github/tsieger/mhca.

  3. 3.

    https://docs.nvidia.com/cuda/cusolver/index.html.

References

  1. CUDA C++ Programming Guide (2021). https://docs.nvidia.com/cuda/cuda-c-programming-guide

  2. Bodenheimer, T., et al.: Fastpg: fast clustering of millions of single cells. bioRxiv (2020)

    Google Scholar 

  3. Chang, D.J., Kantardzic, M.M., Ouyang, M.: Hierarchical clustering with cuda/gpu. In: ISCA PDCCS, pp. 7–12. Citeseer (2009)

    Google Scholar 

  4. Cuomo, S., De Angelis, V., Farina, G., Marcellino, L., Toraldo, G.: A gpu-accelerated parallel k-means algorithm. Comput. Electric. Eng. 75, 262–274 (2019)

    Article  Google Scholar 

  5. Everitt, B., Skrondal, A.: The Cambridge dictionary of statistics, vol. 106. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  6. Fišer, K., et al.: Detection and monitoring of normal and leukemic cell populations with hierarchical clustering of flow cytometry data. Cytometry Part A 81(1), 25–34 (2012)

    Article  Google Scholar 

  7. van Gassen, S., et al.: Flowsom: using self-organizing maps for visualization and interpretation of cytometry data. Cytometry Part A 87(7), 636–645 (2015)

    Article  Google Scholar 

  8. Gowanlock, M., Rude, C.M., Blair, D.M., Li, J.D., Pankratius, V.: Clustering throughput optimization on the gpu. In: 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 832–841. IEEE (2017)

    Google Scholar 

  9. Kratochvíl, M., Bednárek, D., Sieger, T., Fišer, K., Vondrášek, J.: Shinysom: graphical som-based analysis of single-cell cytometry data. Bioinformatics 36(10), 3288–3289 (2020)

    Article  Google Scholar 

  10. Kruliš, M., Kratochvíl, M.: Detailed analysis and optimization of cuda k-means algorithm. In: 49th International Conference on Parallel Processing-ICPP, pp. 1–11 (2020)

    Google Scholar 

  11. Lugli, E., Roederer, M., Cossarizza, A.: Data analysis in flow cytometry: the future just started. Cytometry Part A 77(7), 705–713 (2010)

    Article  Google Scholar 

  12. Mahalanobis, P.C.: On the generalized distance in statistics. National Institute of Science of India (1936)

    Google Scholar 

  13. Shapiro, H.M.: Practical Flow Cytometry. John Wiley & Sons, Hoboken (2005)

    Google Scholar 

  14. Shirkhorshidi, A.S., Aghabozorgi, S., Wah, T.Y.: A comparison study on similarity and dissimilarity measures in clustering continuous data. PloS one 10(12), e0144059 (2015)

    Google Scholar 

  15. Weber, L.M., Robinson, M.D.: Comparison of clustering methods for high-dimensional single-cell flow and mass cytometry data. Cytometry Part A 89(12), 1084–1096 (2016)

    Article  Google Scholar 

  16. Zhang, Q., Zhang, Y.: Hierarchical clustering of gene expression profiles with graphics hardware acceleration. Pattern Recogn. Lett. 27(6), 676–681 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Czech Science Foundation (GAČR) project 19-22071Y, by ELIXIR CZ LM2018131 (MEYS), by Charles University grant SVV-260451, and by Czech Health Research Council (AZV) [NV18-08-00385].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Šmelko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Šmelko, A., Kratochvíl, M., Kruliš, M., Sieger, T. (2021). GPU-Accelerated Mahalanobis-Average Hierarchical Clustering Analysis. In: Sousa, L., Roma, N., Tomás, P. (eds) Euro-Par 2021: Parallel Processing. Euro-Par 2021. Lecture Notes in Computer Science(), vol 12820. Springer, Cham. https://doi.org/10.1007/978-3-030-85665-6_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85665-6_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85664-9

  • Online ISBN: 978-3-030-85665-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics