Abstract
We consider the horizontal linear complementarity problem and we assume that the input data have the form of intervals, representing the range of possible values. For the classical linear complementarity problem, there are known various matrix classes that identify interesting properties of the problem (such as solvability, uniqueness, convexity, finite number of solutions or boundedness). Our aim is to characterize the robust version of these properties, that is, to check them for all possible realizations of interval data. We address successively the following matrix classes: nonnegative matrices, Z-matrices, semimonotone matrices, column sufficient matrices, principally nondegenerate matrices, \(R_0\)-matrices and R-matrices. The reduction of the horizontal linear complementarity problem to the classical one, however, brings complicated dependencies between interval parameters, resulting in some cases to higher computational complexity.
Supported by the Czech Science Foundation Grants P403-18-04735S (M. Hladík) and P403-20-17529S (M. Rada).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alefeld, G., Schäfer, U.: Iterative methods for linear complementarity problems with interval data. Computing 70(3), 235–259 (2003). https://doi.org/10.1007/s00607-003-0014-6
Chung, S.J.: NP-completeness of the linear complementarity problem. J. Optim. Theor. Appl. 60(3), 393–399 (1989)
Cottle, R.W.: Linear complementarity since 1978. In: Giannessi, F., Maugeri, A. (eds.) Variational Analysis and Applications, NOIA, vol. 79, pp. 239–257. Springer, Boston (2005). https://doi.org/10.1007/0-387-24276-7_18
Cottle, R.W., Pang, J.S., Stone, R.E.: The Linear Complementarity Problem. revised ed of the 1992 original edn. SIAM, Philadelphia, PA (2009)
Fiedler, M., Nedoma, J., Ramík, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer, New York (2006)
Garloff, J., Adm, M., Titi, J.: A survey of classes of matrices possessing the interval property and related properties. Reliab. Comput. 22, 1–10 (2016)
Gowda, M.: Reducing a monotone horizontal LCP to an LCP. Appl. Math. Lett. 8(1), 97–100 (1995)
Hladík, M.: Weak and strong solvability of interval linear systems of equations and inequalities. Linear Algebra Appl. 438(11), 4156–4165 (2013)
Hladík, M.: Transformations of interval linear systems of equations and inequalities. Linear Multilinear Algebra 65(2), 211–223 (2017)
Hladík, M.: Stability of the linear complementarity problem properties under interval uncertainty. Cent. Eur. J. Oper. Res. 29, 875–889 (2021)
Hladík, M.: Tolerances, robustness and parametrization of matrix properties related to optimization problems. Optimization 68(2–3), 667–690 (2019)
Hladík, M.: An overview of polynomially computable characteristics of special interval matrices. In: Kosheleva, O., et al. (eds.) Beyond Traditional Probabilistic Data Processing Techniques: Interval, Fuzzy etc. Methods and Their Applications, Studies in Computational Intelligence, vol. 835, pp. 295–310. Springer, Cham (2020)
Horáček, J., Hladík, M., Černý, M.: Interval linear algebra and computational complexity. In: Bebiano, N. (ed.) MAT-TRIAD 2015. SPMS, vol. 192, pp. 37–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49984-0_3
Kreinovich, V.: Why intervals? a simple limit theorem that is similar to limit theorems from statistics. Reliab. Comput. 1(1), 33–40 (1995)
Kreinovich, V.: Why intervals? why fuzzy numbers? towards a new justification. In: Mendel, J.M., Omori, T., Ya, X. (eds.) 2007 IEEE Symposium on Foundations of Computational Intelligen, pp. 113–119 (2007)
Kreinovich, V., Lakeyev, A., Rohn, J., Kahl, P.: Computational Complexity and Feasibility of Data Processing and Interval Computations. Kluwer, Dordrecht (1998)
Ma, H., Xu, J., Huang, N.: An iterative method for a system of linear complementarity problems with perturbations and interval data. Appl. Math. Comput. 215(1), 175–184 (2009)
Mezzadri, F., Galligani, E.: Splitting methods for a class of horizontal linear complementarity problems. J. Optim. Theor. Appl. 180(2), 500–517 (2019)
Mezzadri, F., Galligani, E.: A modulus-based nonsmooth Newton’s method for solving horizontal linear complementarity problems. Optimization Letters 15(5), 1785–1798 (2019). https://doi.org/10.1007/s11590-019-01515-9
Moore, R.E., Kearfott, R.B., Cloud, M.J.: Introduction to Interval Analysis. SIAM, Philadelphia, PA (2009)
Murty, K.G., Yu, F.T.: Linear Complementarity, Internet Linear and Nonlinear Programming (1997)
Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University Press, Cambridge (1990)
Rex, G., Rohn, J.: Sufficient conditions for regularity and singularity of interval matrices. SIAM J. Matrix Anal. Appl. 20(2), 437–445 (1998)
Rohn, J.: Forty necessary and sufficient conditions for regularity of interval matrices: A survey. Electron. J. Linear Algebra 18, 500–512 (2009)
Samelson, H., Thrall, R.M., Wesler, O.: A partition theorem for euclidean \(n\)-spaces. Proc. Am. Math. Soc. 9, 805–807 (1958)
Sznajder, R., Gowda, M.: Generalizations of P\({}_0\)- and P-properties; extended vertical and horizontal linear complementarity problems. Linear Algebra Appl. 223–224, 695–715 (1995)
Tseng, P.: Co-NP-completeness of some matrix classification problems. Math. Program. 88(1), 183–192 (2000)
Tütüncü, R.H., Todd, M.J.: Reducing horizontal linear complementarity problems. Linear Algebra Appl. 223–224, 717–729 (1995)
Zheng, H., Vong, S.: On convergence of the modulus-based matrix splitting iteration method for horizontal linear complementarity problems of \(H_+\)-matrices. Appl. Math. Comput. 369(124890), 1–6 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Hladík, M., Rada, M. (2021). The Horizontal Linear Complementarity Problem and Robustness of the Related Matrix Classes. In: Dorronsoro, B., Amodeo, L., Pavone, M., Ruiz, P. (eds) Optimization and Learning. OLA 2021. Communications in Computer and Information Science, vol 1443. Springer, Cham. https://doi.org/10.1007/978-3-030-85672-4_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-85672-4_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85671-7
Online ISBN: 978-3-030-85672-4
eBook Packages: Computer ScienceComputer Science (R0)