Abstract
The ongoing improvements of technology worldwide helped humans and businesses in different aspects by enhancing human-computer interactions. Especially after the outbreak of the COVID-19, people head to the virtual world by shopping online instead of going to the actual store, watching movies on platforms like “Netflix” instead of going to cinemas, or companies are applying different methods to continue their internal operations online. So most companies now invest much effort to enhance their online platforms to cope with the occurring situation. One way of enhancing the online system, especially in E-commerce, E-learning, and entertainment platforms, is by building robust recommendation algorithms. Recommender systems play a massive role in improving the online experience by suggesting to the user relevant items. However, treating all users the same by applying recommendation strategies that do not include the user her-/himself as the center of the algorithm may lead to an unpleasant user experience as each user has a different personality, taste, and different needs. Thus, in this paper, a structured review of the efforts invested in creating personalized recommendation systems is studied to explore the personal factors included in previous trials. Accordingly, we propose XReC, a generic framework for building character-based recommender systems based on Character Computing principles, including all the aspects that influence human behavior. As a result of integrating multiple human aspects, the system’s complexity will arise. A personalized explanation accompanying each recommendation is provided to improve our framework’s transparency, trustworthiness, persuasiveness, effectiveness, and user satisfaction.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bhatti, A., Akram, H., Basit, H.M., Khan, A.U., Raza, S.M., Naqvi, M.B.: E-commerce trends during COVID-19 pandemic. Int. J. Future Gener. Commun. Netw. 13(2), 1449–1452 (2020)
Nalmpantis, O., Tjortjis, C.: The 50/50 recommender: a method incorporating personality into movie recommender systems. In: Boracchi, G., Iliadis, L., Jayne, C., Likas, A. (eds.) EANN 2017. CCIS, vol. 744, pp. 498–507. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-65172-9_42
Vinciarelli, A., Mohammadi, G.: A survey of personality computing. IEEE Trans. Affect. Comput. 5(3), 273–291 (2014). https://doi.org/10.1109/TAFFC.2014.2330816
Konstan, J.A., Riedl, J., Borchers, A., Herlocker, J.L.: Recommender systems: a grouplens perspective. In: Recommender Systems: Papers from the 1998 Workshop (AAAI Technical Report WS-98-08), pp. 60–64. AAAI Press, Palo Alto (1998)
Santosh Kumar, V.: Survey on personalized web recommender system. Int. J. Inf. Eng. Electron. Bus. (IJIEEB) 10(4), 33–40 (2018)
Kumar, P., Thakur, R.S.: Recommendation system techniques and related issues: a survey. Int. J. Inf. Technol. 10(4), 495–501 (2018). https://doi.org/10.1007/s41870-018-0138-8
Van Meteren, R., Van Someren, M.: Using content-based filtering for recommendation. In: Proceedings of the Machine Learning in the New Information Age: MLnet/ECML2000 Workshop, vol. 30, pp. 47–56 (2000)
Pazzani, M.J., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Nejdl, W. (eds.) The Adaptive Web. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72079-9_10
Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative filtering. arXiv preprint arXiv:1301.7363 (2013)
Said, A., Plumbaum, T., De Luca, E.W., Albayrak, S.: A comparison of how demographic data affects recommendation. User Model. Adapt. Personalization (UMAP) 7 (2011)
Yan, L.: Personalized recommendation method for e-commerce platform based on data mining technology. In: 2017 International Conference on Smart Grid and Electrical Automation (ICSGEA), pp. 514–517 (2017). https://doi.org/10.1109/ICSGEA.2017.62
Benhamdi, S., Babouri, A., Chiky, R.: Personalized recommender system for e-Learning environment. Educ. Inf. Technol. 22(4), 1455–1477 (2016). https://doi.org/10.1007/s10639-016-9504-y
Jariha, P., Jain, S.K.: A state-of-the-art recommender systems: an overview on concepts, methodology and challenges (2018)
Khusro, S., Ali, Z., Ullah, I.: Recommender systems: issues, challenges, and research opportunities. In: The Adaptive Web. LNEE, pp. 1179–1189. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0557-2_112
Aggarwal, C.C.: Knowledge-based recommender systems. In: Recommender Systems. LNEE, pp. 167–197. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-29659-3_5
Tao, J., Tan, T.: Affective computing: a review. In: Tao, J., Tan, T., Picard, R.W. (eds.) ACII 2005. LNCS, vol. 3784, pp. 981–995. Springer, Heidelberg (2005). https://doi.org/10.1007/11573548_125
Paul, D., Kundu, S.: A survey of music recommendation systems with a proposed music recommendation system. In: Mandal, J.K., Bhattacharya, D. (eds.) Emerging Technology in Modelling and Graphics. AISC, vol. 937, pp. 279–285. Springer, Singapore (2020). https://doi.org/10.1007/978-981-13-7403-6_26
Song, Y., Dixon, S., Pearce, M.: A survey of music recommendation systems and future perspectives (2012)
Lin, K., Xu, Z., Liu, J., Wu, Q., Y., Chen, Q.: Personalized music recommendation algorithm based on tag information (2016). https://doi.org/10.1109/ICSESS.2016.7883055
Wishwanath, C.H.P.D., Weerasinghe, S.N., Illandara, K.H., Kadigamuwa, A.S.T.M.R.D.S., Ahangama, S.: A personalized and context aware music recommendation system. In: Meiselwitz, G. (ed.) HCII 2020. LNCS, vol. 12195, pp. 616–627. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49576-3_45
Al-Maliki, M.: Music recommender according to the user current mood. In: Arai, K., Bhatia, R., Kapoor, S. (eds.) FTC 2018. AISC, vol. 880, pp. 828–834. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-02686-8_61
Ferwerda, B., Schedl, M.: Personality-based user modeling for music recommender systems. In: Berendt, B., Bringmann, B., Fromont, É., Garriga, G., Miettinen, P., Tatti, N., Tresp, V. (eds.) ECML PKDD 2016. LNCS (LNAI), vol. 9853, pp. 254–257. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46131-1_29
Harper, F.M., Konstan, J.A.: The movielens datasets: history and context. ACM Trans. Interact. Intell. Syst. (TIIS) 5(4), 1–19 (2015)
Hu, R., Pu, P.: Enhancing collaborative filtering systems with personality information. In: Proceedings of the Fifth ACM Conference on Recommender Systems, pp. 197–204 (2011)
Tkalcic, M., Chen, L.: Personality and recommender systems. In: Ricci, F., Rokach, L., Shapira, B. (eds.) Recommender Systems Handbook. LNCS (LNAI), pp. 715–739. Springer, Boston, MA (2015). https://doi.org/10.1007/978-1-4899-7637-6_21
Manolios, S., Hanjalic, A., Liem, C.: The influence of personal values on music taste: towards value-based music recommendations, pp. 501–505 (2019). https://doi.org/10.1145/3298689.3347021
Balakrishnan, V., Arabi, H.: HyPeRM: a hybrid personality-aware recommender for movie. Malays. J. Comput. Sci. 31, 48–62 (2018). https://doi.org/10.22452/mjcs.vol31no1.4
Chen, L., Zhang, L., Cao, S., Wu, Z., Cao, J.: Personalized itinerary recommendation: deep and collaborative learning with textual information. Expert Syst. Appl. 144, 113070 (2019). https://doi.org/10.1016/j.eswa.2019.113070
El Bolock, A.: What is character computing? In: El Bolock, A., Abdelrahman, Y., Abdennadher, S. (eds.) Character Computing. HIS, pp. 1–16. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-15954-2_1
El Bolock, A., Salah, J., Abdelrahman, Y., Herbert, C., Abdennadher, S.: Character computing: computer science meets psychology. In: Proceedings of the 17th International Conference on Mobile and Ubiquitous Multimedia, pp. 557–562 (2018)
Bolock, A.E., Salah, J., Abdennadher, S., Abdelrahman, Y.: Character computing: challenges and opportunities. In: Proceedings of the 16th International Conference on Mobile and Ubiquitous Multimedia, pp. 555–559 (2017)
El Hefny, W., El Bolock, A., Herbert, C., Abdennadher, S.: Towards a generic framework for character-based chatbots. In: De La Prieta, F., et al. (eds.) PAAMS 2020. CCIS, vol. 1233, pp. 95–107. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51999-5_8
Bolock, A.E., Kady, A.E., Herbert, C., Abdennadher, S.: Towards a character-based meta recommender for movies. In: Alfred, R., Lim, Y., Haviluddin, H., On, C.K. (eds.) Computational Science and Technology. LNEE, vol. 603, pp. 627–638. Springer, Singapore (2020). https://doi.org/10.1007/978-981-15-0058-9_60
Allport, G.W., Odbert, H.S.: Trait-names: a psycho-lexical study. Psychol. Monogr. 47(1), i (1936)
Goldberg, L.R.: The development of markers for the big-five factor structure. Psychol. Assess. 4(1), 26 (1992)
Watson, D., Clark, L.A.: The PANAS-X: manual for the positive and negative affect schedule-expanded form (1999)
Boyle, G.J., Helmes, E., Matthews, G., Izard, C.E.: Measures of affect dimensions. In: Measures of Personality and Social Psychological Constructs, pp. 190–224. Academic Press, Cambridge (2015)
Zhang, Y., Chen, X.: Explainable recommendation: a survey and new perspectives. arXiv preprint arXiv:1804.11192 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Elazab, F., El Bolock, A., Herbert, C., Abdennadher, S. (2021). XReC: Towards a Generic Module-Based Framework for Explainable Recommendation Based on Character. In: De La Prieta, F., El Bolock, A., Durães, D., Carneiro, J., Lopes, F., Julian, V. (eds) Highlights in Practical Applications of Agents, Multi-Agent Systems, and Social Good. The PAAMS Collection. PAAMS 2021. Communications in Computer and Information Science, vol 1472. Springer, Cham. https://doi.org/10.1007/978-3-030-85710-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-030-85710-3_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85709-7
Online ISBN: 978-3-030-85710-3
eBook Packages: Computer ScienceComputer Science (R0)