Skip to main content

A Simple Strategy for Choosing Network Structures in a Object Detection Project with Transfer Learning

  • Conference paper
  • First Online:
Highlights in Practical Applications of Agents, Multi-Agent Systems, and Social Good. The PAAMS Collection (PAAMS 2021)

Abstract

Compare different network configurations in the early stages of an object detection project can be an interesting approach to identify the one that can provide the best performance and, thus, optimize the investment of time and research efforts for the next steps. In this work we will explore the issue through the study of object recognition applied to a category of items, specifically fruits, where the proposed strategy will be to select a public image dataset of these items and to train some different structures of deep learning networks. We built different combinations of structures composed of pre-trained base networks, in which the upper layers were replaced by new structures, with an increasing degree of complexity. Then will evaluate the results of these pre-trained networks with 25 images of individual fruits obtained on the internet. After we compare the performance between the different structures of networks, it is intended to demonstrate if there is a relationship between the training performance of specific models with the complexity of its upper layers when we apply them to a practical evaluation.

Supported by Algoritmi Centre.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Santos, F., et al.: Modelling a deep learning framework for recognition of human actions on video. In: Rocha, Á., Adeli, H., Dzemyda, G., Moreira, F., Ramalho Correia, A.M. (eds.) WorldCIST 2021. AISC, vol. 1365, pp. 104–112. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72657-7_10

    Chapter  Google Scholar 

  2. Durães, D., Marcondes, F.S., Gonçalves, F., Fonseca, J., Machado, J., Novais, P.: Detection violent behaviors: a survey. In: Novais, P., Vercelli, G., Larriba-Pey, J.L., Herrera, F., Chamoso, P. (eds.) ISAmI 2020. AISC, vol. 1239, pp. 106–116. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-58356-9_11

    Chapter  Google Scholar 

  3. Toala, R., Gonçalves, F., Durães, D., Novais, P.: Adaptive and intelligent mentoring to increase user attentiveness in learning activities. In: Simari, G.R., Fermé, E., Gutiérrez Segura, F., Rodríguez Melquiades, J.A. (eds.) IBERAMIA 2018. LNCS (LNAI), vol. 11238, pp. 145–155. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03928-8_12

    Chapter  Google Scholar 

  4. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, Heidelberg (2010)

    MATH  Google Scholar 

  5. Zhao, Z.Q., Zheng, P., Xu, S.T., Wu, X.: Object detection with deep learning: a review. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3212–3232 (2019)

    Article  Google Scholar 

  6. Zhu, F., Shao, L., Xie, J., Fang, Y.: From handcrafted to learned representations for human action recognition: a survey. Image Vis. Comput. 55, 42–52 (2016)

    Article  Google Scholar 

  7. Marcondes, F.S., Durães, D., Gonçalves, F., Fonseca, J., Machado, J., Novais, P.: In-vehicle violence detection in carpooling: a brief survey towards a general surveillance system. In: Dong, Y., Herrera-Viedma, E., Matsui, K., Omatsu, S., González Briones, A., Rodríguez González, S. (eds.) DCAI 2020. AISC, vol. 1237, pp. 211–220. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-53036-5_23

    Chapter  Google Scholar 

  8. Zoph, B., Vasudevan, V., Shlens, J., Le, Q.V.: Learning transferable architectures for scalable image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8697–8710 (2018)

    Google Scholar 

  9. Sargano, A.B., Wang, X., Angelov, P., Habib, Z.: Human action recognition using transfer learning with deep representations. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 463–469. IEEE, May 2017

    Google Scholar 

  10. Torrey, L., Shavlik, J.: Transfer learning. In: Handbook of Research on Machine Learning Applications and Trends: Algorithms, Methods, and Techniques, pp. 242–264. IGI Global (2010)

    Google Scholar 

  11. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:1603.04467 (2016)

  12. Keras API (n.d). https://keras.io/api/applications/

  13. ImageNet (n.d.). https://image-net.org/

  14. Muresşan, H., Oltean, M.: Fruit recognition from images using deep learning. arXiv preprint arXiv:1712.00580 (2017)

  15. Kausar, A., Sharif, M., Park, J., Shin, D.R.: Pure-CNN: a framework for fruit images classification. In: 2018 International Conference on Computational Science and Computational Intelligence (CSCI), pp. 404–408. IEEE, December 2018

    Google Scholar 

  16. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE, June 2009

    Google Scholar 

  17. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  18. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  19. Pan, S.J., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22(10), 1345–1359 (2010). https://doi.org/10.1109/TKDE.2009.191

    Article  Google Scholar 

Download references

Acknowledgment

This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Laercio Sartori , Dalila Durães or Paulo Novais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sartori, L., Durães, D., Novais, P. (2021). A Simple Strategy for Choosing Network Structures in a Object Detection Project with Transfer Learning. In: De La Prieta, F., El Bolock, A., Durães, D., Carneiro, J., Lopes, F., Julian, V. (eds) Highlights in Practical Applications of Agents, Multi-Agent Systems, and Social Good. The PAAMS Collection. PAAMS 2021. Communications in Computer and Information Science, vol 1472. Springer, Cham. https://doi.org/10.1007/978-3-030-85710-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85710-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85709-7

  • Online ISBN: 978-3-030-85710-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics