Skip to main content

Dynamics, Adaptation and Control for Mental Models: A Cognitive Architecture

  • Chapter
  • First Online:
Mental Models and Their Dynamics, Adaptation, and Control

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 394))

Abstract

In this chapter, an overview of the wide variety of occurrences of mental models in the literature is discussed. They are classified according to two dimensions obtaining four categories of mental models: static-dynamic and world-mental, where static refers to mental models for static world states or for static mental states and dynamic refers to mental models for world processes or for mental processes. In addition, distinctions are made for what can be done by mental models: they can, for example, be (1) used for internal simulation, they can be (2) adapted, and these processes can be (3) controlled. This leads to a global three-level cognitive architecture covering these three ways of handling mental models. It is discussed that in this cognitive architecture reflection principles play an important role to define the interactions between the different levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alfred, K.L., Connolly, A.C., Cetron, J.S., Kraemer, D.J.M.: Mental models use common neural spatial structure for spatial and abstract content. Commun. Biol. 3, 17 (2020)

    Google Scholar 

  • Barsalou, L.W.: Grounded cognition. Annu. Rev. Psychol. 59(1), 617–645 (2008)

    Google Scholar 

  • Bargh, J.A., Gollwitzer, P.M., Lee-Chai, A., Barndollar, K., Trötschel, R.: The automated will: nonconscious activation and pursuit of behavioral goals. J. Pers. Soc. Psychol. 81(6), 1014–1027 (2001)

    Google Scholar 

  • Bargh, J.A., Morsella, E.: The Unconscious mind. Perspect. Psychol. Sci. 3(1), 73–79 (2008)

    Google Scholar 

  • Benbassat, J.: Role modeling in medical education: the importance of a reflective imitation. Acad. Med. 89(4), 550–554 (2014)

    Google Scholar 

  • Bhalwankar, R., Treur, J.: Modeling the development of internal mental models by an adaptive network model. In: Proceedings of the 11th Annual International Conference on Brain-Inspired Cognitive Architectures for AI, BICA*AI’20. Procedia Computer Science, Elsevier, vol. 190, issue 4, pp. 90–101 (2021a)

    Google Scholar 

  • Bhalwankar, R., Treur, J.: A second-order adaptive network model for learner-controlled mental model learning processes. In: Proceedings of the 9th International Conference on Complex Networks and their Applications, vol. 2. Studies in Computational Intelligence, vol. 944, pp. 245–259. Springer, Switzerland AG (2021b)

    Google Scholar 

  • Bhalwankar, R., Treur, J.: If only i would have done that...: A controlled adaptive network model for learning by counterfactual thinking. In: Proceedings of the 17th International Conference on Artificial Intelligence Applications and Innovations, AIAI’21. Advances in Information and Communication Technology, vol. 627, pp. 3–16. Springer (2021c)

    Google Scholar 

  • Blatz, W.E.: Human Security: Some Reflections. University of Toronto Press, Toronto, Canada (1966)

    Google Scholar 

  • Bowen, K.A., Kowalski, R.: Amalgamating language and meta-language in logic programming. In: Clark, K., Tarnlund, S. (eds.) Logic Programming, pp. 153–172. Academic Press, New York (1982)

    Google Scholar 

  • Bowen, K.A.: Meta-level programming and knowledge representation. N. Gener. Comput. 3, 359–383 (1985)

    Google Scholar 

  • Brazier, F.M.T., Treur, J., Wijngaards, N.J.E., Willems, M.: Temporal semantics of compositional task models and problem solving methods. Data Knowl. Eng. 29(1), 17–42 (1999)

    MATH  Google Scholar 

  • Buckley, B.C.: Interactive multimedia and model-based learning in biology. Int. J. Sci. Educ. 22(9), 895–935 (2000)

    Google Scholar 

  • Bretherton, I.: The origins of attachment theory: John Bowlby and Mary Ainsworth. Dev. Psychol. 28, 759–775 (1992)

    Google Scholar 

  • Bruner, J.S.: Towards a Theory of Instruction. Harvard University, Cambridge, Mass (1966)

    Google Scholar 

  • Burtscher, M.J., Manser, T.: Team mental models and their potential to improve teamwork and safety. A review and implications for future research in healthcare. Safety Sci. 50(5), 1344–1354 (2012). https://doi.org/10.1016/j.ssci.2011.12.033

  • Cardillo, E.R., Watson, C.E., Schmidt, G.L., Kranjec, A., Chatterjee, A.: From novel to familiar: tuning the brain for metaphors. Neuroimage 59(4), 3212–3221 (2012)

    Google Scholar 

  • Carroll, J.M., Thomas, J.C.: Metaphor and the cognitive representation of computing systems. IEEE Trans. Syst. Man Cybern. 12(2), 107–116 (1982)

    Google Scholar 

  • Craik, K.J.W.: The Nature of Explanation. University Press, Cambridge, MA (1943)

    Google Scholar 

  • Craik, K.J.W.: In: Sherwood, S.L (ed.) The Nature of Psychology. Cambridge University Press, Cambridge (1966)

    Google Scholar 

  • Damasio, A.R.: Descartes Error: Emotion, Reason and the Human Brain. Vintage Books, London (1994)

    Google Scholar 

  • Darling-Hammond, L., Austin, K., Cheung, M., Martin, D.: Thinking about thinking: metacognition. In: The Learning Classroom: Theory into Practice, pp. 157–172. Stanford University School of Education (2008)

    Google Scholar 

  • DeChurch, L.A.; Mesmer-Magnus, J.R.: Measuring shared team mental models. A meta-analysis. Group Dyn.: Theory Res. Practice 14(1), 1–14 (2010a). https://doi.org/10.1037/a0017455

  • DeChurch, L.A.; Mesmer-Magnus, J.R.: The cognitive underpinnings of effective teamwork. A meta-analysis. J. Appl. Psychol. 95(1), 32–53 (2010b). https://doi.org/10.1037/a0017328

  • De Kleer, J., Brown, J.: Assumptions and ambiguities in mechanistic mental models. In: Gentner, D., Stevens, A. (eds.) Mental Models, pp. 155–190. Lawrence Erlbaum Associates, Hillsdale, NJ (1983)

    Google Scholar 

  • Doll, B.B., Simon, D.A., Daw, N.D.: The ubiquity of model-based reinforcement learning. Curr. Opin. Neurobiol. 22, 1075–1081 (2012)

    Google Scholar 

  • Doyle, J.K., Ford, D.N.: Mental models concepts for system dynamics research. Syst. Dyn. Rev. 14(1), 3–29 (1998)

    Google Scholar 

  • Du Plooy, M.C.: Visualisation as a metacognitive strategy in learning multiplicative concepts: a design research intervention. Ph.D. thesis, Department of Mathematics Education, University of Pretoria. https://repository.up.ac.za/handle/2263/51258 (2016)

  • Engelfriet, J., Treur, J.: A temporal model theory for default logic. In: Clarke, M., Kruse, R., Moral, S. (eds.) Proceedings of 2nd European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, ECSQARU’93, pp. 91–96, Springer (1994)

    Google Scholar 

  • Engelfriet, J., Treur, J.: Temporal theories of reasoning. J. Appl. Non-Class. Logics 5(1), 97–119 (1995). See also in: MacNish, C., Pearce, D., Pereira L.M. (eds.) Logics in Artifical Intelligence, Proceedings of the 4th European Workshop on Logics in Artificial Intelligence, JELIA’94, pp. 279–299. Springer (1994)

    Google Scholar 

  • Evans, J.: The heuristic-analytic theory of reasoning: extension and evaluation. Psychon Bull. Rev. 13(3), 378–395 (2006)

    Google Scholar 

  • Flavell, J.H.: Metacognition and cognitive monitoring: a new area of cognitive–developmental inquiry. Am. Psychol. 34(10), 906–911 (1979)

    Google Scholar 

  • Furlough, C.S., Gillan, D.J.: Mental models: structural differences and the role of experience. J. Cogn. Eng. Decis. Making 12(4), 269–287 (2018). https://doi.org/10.1177/1555343418773236

    Article  Google Scholar 

  • Galton, A.: Operators versus arguments: the ins and outs of reification. Synthese 150, 415–441 (2006)

    Google Scholar 

  • Gavrila, I.S., Treur, J.: A formal model for the dynamics of compositional reasoning systems. In: Cohn, A.G. (ed.) Proceedings of the 11th European Conference on Artificial Intelligence, ECAI’94, pp. 307–311. Wiley, Chichester (1994)

    Google Scholar 

  • Gentner, D.: Structure-mapping: a theoretical framework for analogy. Cogn. Sci. 7(2), 155–170 (1983)

    Google Scholar 

  • Gentner, D., Stevens, A. (eds.) Mental Models. Lawrence Erlbaum Associates, Hillsdale, NJ (1983)

    Google Scholar 

  • Gibbons, J., Gray, M.: An integrated and experience-based approach to social work education: the Newcastle model. Soc. Work. Educ. 21(5), 529–549 (2002)

    Google Scholar 

  • Goldman, A.I.: Simulating Minds: The Philosophy, Psychology, and Neuroscience of Mindreading. Oxford University Press, New York (2006)

    Google Scholar 

  • Granqvist, P., Kirkpatrick, L.A.: Attachment and religious representations and behavior. In: Cassidy, J., Shaver, P.R. (eds.) Handbook of Attachment: Theory, Research, and Clinical Applications, 2nd edn., pp. 906–933. Guilford, New York (2008)

    Google Scholar 

  • Greca, I.M., Moreira, M.A.: Mental models, conceptual models, and modelling. Int. J. Sci. Educ. 22(1), 1–11 (2000)

    Google Scholar 

  • Halford, G.S.: Children’s Understanding: The Development of Mental Models. Lawrence Erlbaum Inc. (1993)

    Google Scholar 

  • Halloun, I.: Schematic modelling for meaningful learning of physics. J. Res. Sci. Teach. 33, 1019–1041 (1996)

    Google Scholar 

  • Hermans, A., Muhammad, S., Treur, J.: A second-order adaptive network model for attachment theory. In: Proceedings of the 21th International Conference on Computational Science, ICCS’21. Lecture Notes in Computer Science, vol. 12744, pp. 462–475. Springer (2021).

    Google Scholar 

  • Hesslow, G.: Conscious thought as simulation of behaviour and perception. Trends Cogn. Sci. 6, 242–247 (2002)

    Google Scholar 

  • Hesslow, G.: The current status of the simulation theory of cognition. Brain Res. 1428, 71–79 (2012)

    Google Scholar 

  • Hofstadter, D.R.: Gödel, Escher, Bach. Basic Books, New York (1979)

    MATH  Google Scholar 

  • Hogan, K.E., Pressley, M.E.: Scaffolding Student Learning: Instructional Approaches and Issues. Brookline Books (1997)

    Google Scholar 

  • Holyoak, K.J., Monti, M.M.: Relational integration in the human brain: a review and synthesis. J. Cogn. Neurosci. (2020)

    Google Scholar 

  • Hurley, S.: The shared circuits model (SCM): How control, mirroring, and simulation can enable imitation, deliberation, and mindreading. Behav. Brain Sci. 31(1), 1–22 (2008)

    Google Scholar 

  • Johnson-Laird, P.N.: Mental Models: Towards a Cognitive Science of Language, Inference, and Consciousness. Harvard University Press (1983)

    Google Scholar 

  • Johnson-Laird, P.: The history of mental models. In: Manktelow, K., Chung, M.C. (eds.) Psychology of Reasoning: Theoretical and Historical Perspectives. Psychology Press, New York (2004)

    Google Scholar 

  • Jonker, C.M., Treur, J.: Analysis of the dynamics of reasoning using multiple representations. In: Gray, W.D., Schunn, C.D. (eds.) Proceedings of the 24th Annual Conference of the Cognitive Science Society, CogSci 2002, pp. 512–517. Lawrence Erlbaum Associates, Inc., Mahwah, NJ (2002)

    Google Scholar 

  • Jonker, C.M., Treur, J.: Modelling the dynamics of reasoning processes: reasoning by assumption. Cogn. Syst. Res. J. 4, 119–136 (2003)

    Google Scholar 

  • Kim, J.: Philosophy of Mind. Westview Press (1996)

    Google Scholar 

  • Koedinger, K.R., Terao, A.: A cognitive task analysis of using pictures to support pre-algebraic reasoning. In: Gray, W.D., Schunn, C.D. (eds.) Proceedings of the 24th Annual Conference of the Cognitive Science Society, CogSci’02, pp. 542–547. Lawrence Erlbaum Associates, Mahwah, NJ (2002)

    Google Scholar 

  • Koriat, A.: Metacognition and consciousness. In: Zelavo, P.D., Moscovitch, M., Thompson, E. (eds.). Cambridge Handbook of Consciousness. Cambridge University Press, New York (2007)

    Google Scholar 

  • Kozma, R.B.: Learning with media. Rev. Educ. Res. 61(2), 179–211 (1991)

    Google Scholar 

  • Kuang, W.X.Y.: The systematicity and coherence of conceptual metaphor. Foreign Lang. Res. 3 (2003)

    Google Scholar 

  • Lakoff, G.: The contemporary theory of metaphor. In: Ortony, A. (ed.) Metaphor and Thought, pp. 202–251. Cambridge University Press (1993)

    Google Scholar 

  • Lakoff, G., Johnson, M.: Metaphors We Live By. University of Chicago Press, Chicago (2003)

    Google Scholar 

  • Landau, M.J., Meier, B.P., Keefer, L.A.: A metaphor-enriched social cognition. Psychol. Bull. 136(6), 1045–1067 (2010)

    Google Scholar 

  • Langan-Fox, J., Code, S., Langfield-Smith, K.: Team mental models. Techniques, methods, and analytic approaches. Hum. Factors 42(2), 242–271 (2000). https://doi.org/10.1518/001872000779656534

  • Larbi, E., Mavis, O.: The Use of Manipulatives in mathematics education. J. Educ. Pract. 7(36), 53–61 (2016)

    Google Scholar 

  • Leary, D.E. (ed.): Metaphors in the history of psychology. Paperback (ed.) Cambridge University Press, Cambridge (1994)

    Google Scholar 

  • Mahdavi, M.: An overview: metacognition in education. Int. J. Multidiscip. Curr. Res. 2, 529–535 (2014)

    Google Scholar 

  • Mayer, R.E.: Models for understanding. Rev. Educ. Res. 59(1), 43–64 (1989)

    Google Scholar 

  • McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001)

    Google Scholar 

  • Meela, P., Yuenyong, C.: The study of grade 7 mental model about properties of gas in science learning through model based inquiry (MBI). In: Proceedings of the International Conference for Science Educators and Teachers, pp. 1–6. AIP Conference Proceedings, vol. 2081(030028). AIP Publishing LLC (2019)

    Google Scholar 

  • Mercer, J.: Understanding Attachment: Parenting, Child Care, and Emotional Development. Greenwood Publishing Group (2006)

    Google Scholar 

  • Mohammed, S., Ferzandi, L., Hamilton, K.: Metaphor no more. A 15-year review of the team mental model construct. In: J. Manage. 36(4), 876–910 (2010). https://doi.org/10.1177/0149206309356804

  • Meyer, J.-J. Ch, Treur, J. (eds.): Dynamics and Management of Reasoning Processes. Springer (2001)

    Google Scholar 

  • Nagel, E., Newman, J.: Gödel’s Proof. New York University Press, New York (1965)

    MATH  Google Scholar 

  • Neilson, D., Campbell, T., Allred, B.: Model-based inquiry: a buoyant force module for high school physics classes. Sci. Teach. 77(8), 38–43 (2010)

    Google Scholar 

  • Nini, M.: All on the same page: how Team Mental Models (TMM) increase team performance. CQ Net (2019). https://www.ckju.net/en/dossier/team-mental-models-increase-team-performance

  • Piaget, J.: Origins of Intelligence in the Child (La Naissance de l’intelligence chez l’enfant). Routledge & Kegan Paul, London (1936)

    Google Scholar 

  • Piaget, J.: The Construction of Reality in the Child. Basic Books Inc., New York (1954)

    Google Scholar 

  • Pintrich, P.R.: The role of goal orientation in self-regulated learning. In: Boekaerts, M., Pintrich, P., Zeidner, M. (eds.) Handbook of Self-regulation Research and Applications, pp. 451–502. Academic Press, Orlando, FL (2000)

    Google Scholar 

  • Ponterotto, D.: The cohesive role of cognitive metaphor in discourse and conversation. In: Metaphor and Metonymy at the Crossroads: A Cognitive Perspective, pp. 283–298 (2000)

    Google Scholar 

  • Refaie, E.E.: Understanding visual metaphor: the example of newspaper cartoons. Vis. Commun. 2(1), 75–95 (2003)

    Google Scholar 

  • Rizzolatti, G., Craighero, L.: The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004)

    Google Scholar 

  • Romero, E., Soria, B.: Cognitive metaphor theory revisited. J. Lit. Semant. 34(1), 1–20 (2005)

    Google Scholar 

  • Salter, M.D.: An evaluation of adjustment based on the concept of security. Ph.D. thesis, vol 18, p. 72. University of Toronto Studies, Child Development Series (1940)

    Google Scholar 

  • Salter Ainsworth, M.D.: Security and attachment. In: Volpe, R. (ed.) The Secure Child: Timeless Lessons in Parenting and Childhood Education, pp. 43–53. Information Age Publishing, Charlotte, NC (2010)

    Google Scholar 

  • Salter Ainsworth, M.D., Bowlby, J.: Child Care and the Growth of Love. Penguin Books, London (1965)

    Google Scholar 

  • Schaap-Jonker, H., Corveleyn, J.M.: Mentalizing and religion. Arch. Psychol. Relig. 36(3), 303–322 (2014)

    Google Scholar 

  • Schjoedt, U., Stodkilde-Jorgensen, H., Geerts, A.W., Roepstorff, A.: Highly religious participants recruit areas of social cognition in personal prayer. SocCog Affect. Neurosci. 4, 199–207 (2009)

    Google Scholar 

  • Seel, N.M.: Mental models in learning situations. In: Advances in Psychology, vol. 138, pp. 85–107. North-Holland, Amsterdam (2006)

    Google Scholar 

  • Shannon, S.V.: Using metacognitive strategies and learning styles to create self-directed learners. Inst. Learning Styles J. 1, 14–28 (2008)

    Google Scholar 

  • Shih, Y.F., Alessi, S.M.: Mental models and transfer of learning in computer programming. J. Res. Comput. Educ. 26(2), 154–175 (1993)

    Google Scholar 

  • Skemp, R.R.: The Psychology of Learning Mathematics. Penguin Books, Harmondsworth (1971)

    Google Scholar 

  • Smorynski, C.: The incompleteness theorems. In: Barwise, J. (ed.) Handbook of Mathematical Logic, vol. 4, pp. 821–865. North-Holland, Amsterdam (1977)

    Google Scholar 

  • Sterling, L., Beer, R.: Metainterpreters for expert system construction. J. Log. Program. 6, 163–178 (1989)

    Google Scholar 

  • Treur, J.: On the use of reflection principles in modelling complex reasoning. Int. J. Intell. Syst. 6, 277–294 (1991)

    Google Scholar 

  • Treur, J.: Temporal semantics of meta-level architectures for dynamic control of reasoning. In: Fribourg, L., Turini, F. (ed.) Logic Program Synthesis and Transformation-Meta-Programming in Logic, Proceedings of the Fourth International Workshop on Meta-Programming in Logic, META’94. Lecture Notes in Computer Science, vol. 883, pp. 353–376. Springer (1994)

    Google Scholar 

  • Treur, J.: Network-Oriented Modeling for Adaptive Networks: Designing Higher-Order Adaptive Biological, Mental and Social Network Models. Springer Nature (2020)

    Google Scholar 

  • Treur, J.: An adaptive network model covering metacognition to control adaptation for multiple mental models. Cogn. Syst. Res. 67, 18–27 (2021a)

    Google Scholar 

  • Treur, J.: Controlled social network adaptation: subjective elements in an objective social world. In: Proceedings of the 7th International Congress on Information and Communication Technology, ICICT’21. Advances in Intelligent Systems and Computing, vol. 235, pp. 263–274. Springer Nature (2021b)

    Google Scholar 

  • Treur, J.: Self-modeling networks using adaptive internal mental models for cognitive analysis and support processes. In: Proceedings of the 9th International Conference on Complex Networks and Their Applications, vol. 2. Studies in Computational Intelligence, vol. 944, pp. 260–274. Springer (2021c)

    Google Scholar 

  • Treur, J.: Mental models in the brain: on context-dependent neural correlates of mental models. Cogn. Syst. Res. 79, 83–90 (2021d)

    Google Scholar 

  • Treur, J.: Modeling the emergence of informational content by adaptive networks for temporal factorisation and criterial causation. Cogn. Syst. Res. 68, 34–52 (2021e)

    Google Scholar 

  • Treur, J., Van Ments, L. (eds.): Mental Models and their Dynamics, Adaptation and Control: A Self-Modeling Network Modeling Approach. Springer, Cham, Switzerland (2022) (this volume)

    Google Scholar 

  • Van Gog, T., Paas, F., Marcus, N., Ayres, P., Sweller, J.: The mirror neuron system and observational learning: implications for the effectiveness of dynamic visualizations. Educ. Psychol. Rev. 21(1), 21–30 (2009)

    Google Scholar 

  • Van Ments, L., Treur, J.: A higher-order adaptive network model to simulate development of and recovery from PTSD. In: Proceedings of the 11the International Conference on Computational Science, ICCS’21. Lecture Notes in Computer Science, vol. 12743, pp. 154–166. Springer (2021a)

    Google Scholar 

  • Van Ments, L., Treur, J.: Modeling adaptive cooperative and competitive metaphors as mental models for joint decision making. Cogn. Syst. Res. 69, 67–82 (2021b)

    Google Scholar 

  • Van Ments, L., Treur, J., Klein, J., Roelofsma, P.H.M.P.: A second-order adaptive network model for shared mental models in hospital teamwork. In: Nguyen, N.T., et al. (eds.) Proceedings of the 13th International Conference on Computational Collective Intelligence, ICCCI’21. Lecture Notes in AI, vol. 12876, pp. 126–140. Springer Nature (2021)

    Google Scholar 

  • Van Ments, L., Treur, J., Roelofsma, P.H.M.P.: An adaptive network model for formation and use of a mental god-model and its effect on human empathy. In: Treur and Van Ments, 2022, Chap. 11 (this volume) (2022)

    Google Scholar 

  • Vosniadou, S., Ortony, A. (eds.): Similarity and Analogical Reasoning. Cambridge University Press, New York (1989)

    Google Scholar 

  • Weyhrauch, R.W.: Prolegomena to a theory of mechanized formal reasoning. Artif. Intell. 13, 133–170 (1980)

    MathSciNet  MATH  Google Scholar 

  • Williams, D.: Predictive minds and small-scale models: Kenneth Craik’s contribution to cognitive science. Philos. Explor. 21(2), 245–263 (2018a)

    Google Scholar 

  • Williams, D.: The mind as a predictive modelling engine: generative models, structural similarity, and mental representation. Ph.D. thesis, University of Cambridge, UK. (2018)

    Google Scholar 

  • Williams, L.E., Huang, J.Y., Bargh, J.A.: The scaffolded mind: higher mental processes are grounded in early experience of the physical world. Eur. J. Soc. Psychol. 39(7), 1257–1267 (2009)

    Google Scholar 

  • Whitaker, K.J., Vendetti, M.S., Wendelken, C., Bunge, S.A.: Neuroscientific insights into the development of analogical reasoning. Dev. Sci. 21, e12531 (2018). https://doi.org/10.1111/desc.12531

  • Yi, M.Y., Davis, F.D.: Developing and validating an observational learning model of computer software training and skill acquisition. Inf. Syst. Res. 14(2), 146–169 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Treur .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

van Ments, L., Treur, J. (2022). Dynamics, Adaptation and Control for Mental Models: A Cognitive Architecture. In: Treur, J., Van Ments, L. (eds) Mental Models and Their Dynamics, Adaptation, and Control. Studies in Systems, Decision and Control, vol 394. Springer, Cham. https://doi.org/10.1007/978-3-030-85821-6_1

Download citation

Publish with us

Policies and ethics