Abstract
This paper offers an integrated framework bridging production and logistics processes that employs a machine learning-enabled digital twin to ensure adaptive production scheduling and resilient supply chain operations. The digital-twin based architecture will enable manufacturers to proactively manage supply chain risk in an increasingly complex and dynamic environment. This integrated framework enables “sense-and-respond” capabilities, i.e. the ability to sense potential supplier and production risks that affect ultimate delivery to the customer, to update anticipated customer delivery dates, and recommend mitigating steps that minimize any anticipated disruption. In its core functionality this framework senses disruptions at a supplier facility that cascade down the upstream supply chain and employs the predictive capabilities of its machine learning-based engine to trigger and support adaptive changes to the manufacturer’s MES system. Any changes to the production schedule that cannot be accommodated in a revised schedule are propagated across the downstream supply chain alerting end customers to any changes.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Baryannis, G., Validi, S., Dani, S., Antoniou, G.: Supply chain risk management and artificial intelligence: state of the art and future research directions. Int. J. Prod. Res. 57(7), 2179–2202 (2019). https://doi.org/10.1080/00207543.2018.1530476
Ivanov, D., Dolgui, A.: A digital supply chain twin for managing disruption risks and resiliencies in the era of Industry 4.0. Prod. Plan. Control 32(9), 775–788 (2021). https://doi.org/10.1080/09537287.2020.1768450
Ivanov, D., Dolgui, A.: Low-Certainty-Need (LCN) supply chains: a new perspective in managing disruption risks and resilience. Int. J. Prod. Res. 57(15–16), 5119–5136 (2019). https://doi.org/10.1080/00207543.2018.1521025
Melançon, G.G., Grangier, P., Prescott-Gagnon, E., Sabourin, E., Rousseau, L.-M.: A machine learning-based system for predicting service level failures in supply chains. INFORMS J. Appl. Anal. 51(3), 200–212 (2021). https://doi.org/10.1287/inte.2020.1055
Cavalcante, I., Frazzon, E., Forcellini, F., Ivanov, D.: A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing. Int. J. Inf. Manag. 49, 86–97 (2019). https://doi.org/10.1016/j.ijinfomgt.2019.03.004
Birkel, H., Kopyto, M., Lutz, C.: Challenges of applying predictive analytics in transport logistics. In: Laumer, S., Quesenberry, J.L., Joseph, D., Maier, C., Beimborn, D., Srivastava, S.C. (eds.) Proceedings of the 2020 on Computers and People Research Conference (SIGMIS-CPR 2020), pp. 144–151. ACM, New York (2020). https://doi.org/10.1145/3378539.3393864
Ouedraogo, C.A., Namakiaraghi, S., Rosemont, C., Montarnal, A., Lauras, M., Gourc, D.: Traceability and risk management in multi-modal container transport: a small - scale review of methods and technologies. In: Benadada, Y., Mhada, F.-Z. (eds.) 5th International Conference on Logistics Operations Management (GOL), pp. 1–7. IEEE, Piscataway (2020). https://doi.org/10.1109/GOL49479.2020.9314760
van der Spoel, S., Amrit, C., van Hillegersberg, J.: Predictive analytics for truck arrival time estimation: a field study at a European distribution centre. Int. J. Prod. Res. 55(17), 5062–5078 (2020). https://doi.org/10.1080/00207543.2015.1064183
Viellechner, A., Spinler, S.: Novel data analytics meets conventional container shipping: predicting delays by comparing various machine learning algorithms. In: Bui, T.X. (ed.) Proceedings of the 53rd Hawaii International Conference on System Sciences (HICSS), pp. 1278–1287. ScholarSpace (2020). https://doi.org/10.24251/HICSS.2020.158
Servos, N., Liu, X., Teucke, M., Freitag, M.: Travel time prediction in a multimodal freight transport relation using machine learning algorithms. Logistics 4(1), 1 (2020). https://doi.org/10.3390/logistics4010001
Schleich, B., Anwer, N., Mathieu, L., Wartzack, S.: Shaping the digital twin for design and production engineering. CIRP Ann. 66(1), 141–144 (2017). https://doi.org/10.1016/j.cirp.2017.04.040
Tao, F., Qi, Q., Liu, A., Kusiak, A.: Data-driven smart manufacturing. J. Manuf. Syst. 48(Part C), 157–169 (2018). https://doi.org/10.1016/j.jmsy.2018.01.006
Jaensch, F., Csiszar, A., Scheifele, S., Verl, A.: Digital twins of manufacturing systems as a base for machine learning. In: Verl, A., Xu, W. (eds.) 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp. 1–6. IEEE, Piscataway (2018). https://doi.org/10.1109/M2VIP.2018.8600844
Leng, J., et al.: Digital twin-driven rapid reconfiguration of the automated manufacturing system via an open architecture model. Robot. Comput. Integr. Manuf. 63, 101895 (2020). https://doi.org/10.1016/j.rcim.2019.101895
Liu, Q., Zhang, H., Leng, J., Chen, X.: Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system. Int. J. Prod. Res. 57(12), 3903–3919 (2019). https://doi.org/10.1080/00207543.2018.1471243
Vachálek, J., Bartalský, L., Rovný, O., Šišmišová, D., Morháč, M., Lokšík, M.: The digital twin of an industrial production line within the Industry 4.0 concept. In: Fikar, M., Kvasnica, M. (eds.) 2017 21st International Conference on Process Control (PC), pp. 258–262. IEEE, Piscataway (2017). https://doi.org/10.1109/PC.2017.7976223
Min, Q., Lu, Y., Liu, Z., Su, C., Wang, B.: Machine learning based digital twin framework for production optimization in petrochemical industry. Int. J. Inf. Manag. 49, 502–519 (2019). https://doi.org/10.1016/j.ijinfomgt.2019.05.020
Usuga Cadavid, J.P., Lamouri, S., Grabot, B., Pellerin, R., Fortin, A.: Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0. J. Intell. Manuf. 31(6), 1531–1558 (2020). https://doi.org/10.1007/s10845-019-01531-7
Weichert, D., Link, P., Stoll, A., Rüping, S., Ihlenfeldt, S., Wrobel, S.: A review of machine learning for the optimization of production processes. Int. J. Adv. Manuf. Technol. 104(5–8), 1889–1902 (2019). https://doi.org/10.1007/s00170-019-03988-5
Meiners, M., Mayr, A., Thomsen, M., Franke, J.: Application of machine learning for product batch oriented control of production processes. Procedia CIRP 93, 431–436 (2020). https://doi.org/10.1016/j.procir.2020.04.006
Gyulai, D., Pfeiffer, A., Nick, G., Gallina, V., Sihn, W., Monostori, L.: Lead time prediction in a flow-shop environment with analytical and machine learning approaches. IFAC-PapersOnLine 51(11), 1029–1034 (2018). https://doi.org/10.1016/j.ifacol.2018.08.472
Mezzogori, D., Romagnoli, G., Zammori, F.: Deep learning and WLC: how to set realistic delivery dates in high variety manufacturing systems. IFAC-PapersOnLine 52(13), 2092–2097 (2019). https://doi.org/10.1016/j.ifacol.2019.11.514
Can, B., Heavey, C.: A demonstration of machine learning for explicit functions for cycle time prediction using MES data. In: Roeder, T.M., Frazier, P.I., Szechtman, R., Zhou, E. (eds.) 2016 Winter Simulation Conference (WSC), pp. 2500–2511. IEEE, Piscataway (2016). https://doi.org/10.1109/WSC.2016.7822289
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Greis, N.P., Nogueira, M.L., Rohde, W. (2021). Digital Twin Framework for Machine Learning-Enabled Integrated Production and Logistics Processes. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. APMS 2021. IFIP Advances in Information and Communication Technology, vol 630. Springer, Cham. https://doi.org/10.1007/978-3-030-85874-2_23
Download citation
DOI: https://doi.org/10.1007/978-3-030-85874-2_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85873-5
Online ISBN: 978-3-030-85874-2
eBook Packages: Computer ScienceComputer Science (R0)