Skip to main content

Digital Twin Framework for Machine Learning-Enabled Integrated Production and Logistics Processes

  • Conference paper
  • First Online:
Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems (APMS 2021)

Abstract

This paper offers an integrated framework bridging production and logistics processes that employs a machine learning-enabled digital twin to ensure adaptive production scheduling and resilient supply chain operations. The digital-twin based architecture will enable manufacturers to proactively manage supply chain risk in an increasingly complex and dynamic environment. This integrated framework enables “sense-and-respond” capabilities, i.e. the ability to sense potential supplier and production risks that affect ultimate delivery to the customer, to update anticipated customer delivery dates, and recommend mitigating steps that minimize any anticipated disruption. In its core functionality this framework senses disruptions at a supplier facility that cascade down the upstream supply chain and employs the predictive capabilities of its machine learning-based engine to trigger and support adaptive changes to the manufacturer’s MES system. Any changes to the production schedule that cannot be accommodated in a revised schedule are propagated across the downstream supply chain alerting end customers to any changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baryannis, G., Validi, S., Dani, S., Antoniou, G.: Supply chain risk management and artificial intelligence: state of the art and future research directions. Int. J. Prod. Res. 57(7), 2179–2202 (2019). https://doi.org/10.1080/00207543.2018.1530476

    Article  Google Scholar 

  2. Ivanov, D., Dolgui, A.: A digital supply chain twin for managing disruption risks and resiliencies in the era of Industry 4.0. Prod. Plan. Control 32(9), 775–788 (2021). https://doi.org/10.1080/09537287.2020.1768450

    Article  Google Scholar 

  3. Ivanov, D., Dolgui, A.: Low-Certainty-Need (LCN) supply chains: a new perspective in managing disruption risks and resilience. Int. J. Prod. Res. 57(15–16), 5119–5136 (2019). https://doi.org/10.1080/00207543.2018.1521025

    Article  Google Scholar 

  4. Melançon, G.G., Grangier, P., Prescott-Gagnon, E., Sabourin, E., Rousseau, L.-M.: A machine learning-based system for predicting service level failures in supply chains. INFORMS J. Appl. Anal. 51(3), 200–212 (2021). https://doi.org/10.1287/inte.2020.1055

    Article  Google Scholar 

  5. Cavalcante, I., Frazzon, E., Forcellini, F., Ivanov, D.: A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing. Int. J. Inf. Manag. 49, 86–97 (2019). https://doi.org/10.1016/j.ijinfomgt.2019.03.004

    Article  Google Scholar 

  6. Birkel, H., Kopyto, M., Lutz, C.: Challenges of applying predictive analytics in transport logistics. In: Laumer, S., Quesenberry, J.L., Joseph, D., Maier, C., Beimborn, D., Srivastava, S.C. (eds.) Proceedings of the 2020 on Computers and People Research Conference (SIGMIS-CPR 2020), pp. 144–151. ACM, New York (2020). https://doi.org/10.1145/3378539.3393864

  7. Ouedraogo, C.A., Namakiaraghi, S., Rosemont, C., Montarnal, A., Lauras, M., Gourc, D.: Traceability and risk management in multi-modal container transport: a small - scale review of methods and technologies. In: Benadada, Y., Mhada, F.-Z. (eds.) 5th International Conference on Logistics Operations Management (GOL), pp. 1–7. IEEE, Piscataway (2020). https://doi.org/10.1109/GOL49479.2020.9314760

  8. van der Spoel, S., Amrit, C., van Hillegersberg, J.: Predictive analytics for truck arrival time estimation: a field study at a European distribution centre. Int. J. Prod. Res. 55(17), 5062–5078 (2020). https://doi.org/10.1080/00207543.2015.1064183

    Article  Google Scholar 

  9. Viellechner, A., Spinler, S.: Novel data analytics meets conventional container shipping: predicting delays by comparing various machine learning algorithms. In: Bui, T.X. (ed.) Proceedings of the 53rd Hawaii International Conference on System Sciences (HICSS), pp. 1278–1287. ScholarSpace (2020). https://doi.org/10.24251/HICSS.2020.158

  10. Servos, N., Liu, X., Teucke, M., Freitag, M.: Travel time prediction in a multimodal freight transport relation using machine learning algorithms. Logistics 4(1), 1 (2020). https://doi.org/10.3390/logistics4010001

    Article  Google Scholar 

  11. Schleich, B., Anwer, N., Mathieu, L., Wartzack, S.: Shaping the digital twin for design and production engineering. CIRP Ann. 66(1), 141–144 (2017). https://doi.org/10.1016/j.cirp.2017.04.040

    Article  Google Scholar 

  12. Tao, F., Qi, Q., Liu, A., Kusiak, A.: Data-driven smart manufacturing. J. Manuf. Syst. 48(Part C), 157–169 (2018). https://doi.org/10.1016/j.jmsy.2018.01.006

    Article  Google Scholar 

  13. Jaensch, F., Csiszar, A., Scheifele, S., Verl, A.: Digital twins of manufacturing systems as a base for machine learning. In: Verl, A., Xu, W. (eds.) 25th International Conference on Mechatronics and Machine Vision in Practice (M2VIP), pp. 1–6. IEEE, Piscataway (2018). https://doi.org/10.1109/M2VIP.2018.8600844

  14. Leng, J., et al.: Digital twin-driven rapid reconfiguration of the automated manufacturing system via an open architecture model. Robot. Comput. Integr. Manuf. 63, 101895 (2020). https://doi.org/10.1016/j.rcim.2019.101895

    Article  Google Scholar 

  15. Liu, Q., Zhang, H., Leng, J., Chen, X.: Digital twin-driven rapid individualised designing of automated flow-shop manufacturing system. Int. J. Prod. Res. 57(12), 3903–3919 (2019). https://doi.org/10.1080/00207543.2018.1471243

    Article  Google Scholar 

  16. Vachálek, J., Bartalský, L., Rovný, O., Šišmišová, D., Morháč, M., Lokšík, M.: The digital twin of an industrial production line within the Industry 4.0 concept. In: Fikar, M., Kvasnica, M. (eds.) 2017 21st International Conference on Process Control (PC), pp. 258–262. IEEE, Piscataway (2017). https://doi.org/10.1109/PC.2017.7976223

  17. Min, Q., Lu, Y., Liu, Z., Su, C., Wang, B.: Machine learning based digital twin framework for production optimization in petrochemical industry. Int. J. Inf. Manag. 49, 502–519 (2019). https://doi.org/10.1016/j.ijinfomgt.2019.05.020

    Article  Google Scholar 

  18. Usuga Cadavid, J.P., Lamouri, S., Grabot, B., Pellerin, R., Fortin, A.: Machine learning applied in production planning and control: a state-of-the-art in the era of industry 4.0. J. Intell. Manuf. 31(6), 1531–1558 (2020). https://doi.org/10.1007/s10845-019-01531-7

    Article  Google Scholar 

  19. Weichert, D., Link, P., Stoll, A., Rüping, S., Ihlenfeldt, S., Wrobel, S.: A review of machine learning for the optimization of production processes. Int. J. Adv. Manuf. Technol. 104(5–8), 1889–1902 (2019). https://doi.org/10.1007/s00170-019-03988-5

    Article  Google Scholar 

  20. Meiners, M., Mayr, A., Thomsen, M., Franke, J.: Application of machine learning for product batch oriented control of production processes. Procedia CIRP 93, 431–436 (2020). https://doi.org/10.1016/j.procir.2020.04.006

    Article  Google Scholar 

  21. Gyulai, D., Pfeiffer, A., Nick, G., Gallina, V., Sihn, W., Monostori, L.: Lead time prediction in a flow-shop environment with analytical and machine learning approaches. IFAC-PapersOnLine 51(11), 1029–1034 (2018). https://doi.org/10.1016/j.ifacol.2018.08.472

    Article  Google Scholar 

  22. Mezzogori, D., Romagnoli, G., Zammori, F.: Deep learning and WLC: how to set realistic delivery dates in high variety manufacturing systems. IFAC-PapersOnLine 52(13), 2092–2097 (2019). https://doi.org/10.1016/j.ifacol.2019.11.514

    Article  Google Scholar 

  23. Can, B., Heavey, C.: A demonstration of machine learning for explicit functions for cycle time prediction using MES data. In: Roeder, T.M., Frazier, P.I., Szechtman, R., Zhou, E. (eds.) 2016 Winter Simulation Conference (WSC), pp. 2500–2511. IEEE, Piscataway (2016). https://doi.org/10.1109/WSC.2016.7822289

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noel P. Greis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Greis, N.P., Nogueira, M.L., Rohde, W. (2021). Digital Twin Framework for Machine Learning-Enabled Integrated Production and Logistics Processes. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. APMS 2021. IFIP Advances in Information and Communication Technology, vol 630. Springer, Cham. https://doi.org/10.1007/978-3-030-85874-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85874-2_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85873-5

  • Online ISBN: 978-3-030-85874-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics