Skip to main content

Abstract

Industry has taken a big leap forward by placing a human in the center of interest by turning the working areas into a collaborative environment between operators and robots. In this environment, human behavior is a major uncertainty factor that can affect operator’s safety and execution status. Furthermore, the creation of a digital twin including the whole workstation area, the operators and the procedures that take part in there, is a way to design and integrate collaborative systems using a virtual space. This paper aims to overview the current state of the technological trends in human detection, human task monitoring and digital twin integration. Also, the design of the upcoming solution of a case study from the automotive industry will be represented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chryssolouris, G.: Manufacturing Systems: Theory and Practice. Springer New York, New York, NY (2006). https://doi.org/10.1007/0-387-28431-1

  2. Chryssolouris, G., Georgoulias, K., Michalos, G.: Production systems flexibility: theory and practice. In: IFAC Proceedings Volumes (IFAC-PapersOnline), pp. 15–21. IFAC Secretariat (2012). https://doi.org/10.3182/20120523-3-RO-2023.00442

  3. Koren, Y., Shpitalni, M.: Design of reconfigurable manufacturing systems. J. Manuf. Syst. 29, 130–141 (2010). https://doi.org/10.1016/J.JMSY.2011.01.001

    Article  Google Scholar 

  4. Houshmand, M., Jamshidnezhad, B.: An extended model of design process of lean production systems by means of process variables. Robot. Comput. Integr. Manuf. 22, 1–16 (2006). https://doi.org/10.1016/j.rcim.2005.01.004

    Article  Google Scholar 

  5. Giret, A., Botti, V.: Engineering holonic manufacturing systems. Comput. Ind. 60, 428–440 (2009). https://doi.org/10.1016/j.compind.2009.02.007

    Article  Google Scholar 

  6. Scholz-Reiter, B., Freitag, M.: Autonomous processes in assembly systems. CIRP Ann. - Manuf. Technol. 56, 712–729 (2007). https://doi.org/10.1016/j.cirp.2007.10.002

    Article  Google Scholar 

  7. Kousi, N., Michalos, G., Aivaliotis, S., Makris, S.: An outlook on future assembly systems introducing robotic mobile dual arm workers. Procedia CIRP. 72, 33–38 (2018). https://doi.org/10.1016/j.procir.2018.03.130

    Article  Google Scholar 

  8. Makris, S.: Cooperating Robots for Flexible Manufacturing. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-51591-1

  9. Wang, L., et al.: Symbiotic human-robot collaborative assembly. CIRP Ann. 68, 701–726 (2019). https://doi.org/10.1016/j.cirp.2019.05.002

    Article  Google Scholar 

  10. Tsarouchi, P., Michalos, G., Makris, S., Athanasatos, T., Dimoulas, K., Chryssolouris, G.: On a human–robot workplace design and task allocation system. Int. J. Comput. Integr. Manuf. 30, 1272–1279 (2017). https://doi.org/10.1080/0951192X.2017.1307524

    Article  Google Scholar 

  11. Andrianakos, G., Dimitropoulos, N., Michalos, G., Makris, S.: An approach for monitoring the execution of human based assembly operations using machine learning. In: Procedia CIRP, pp. 198–203. Elsevier B.V. (2020). https://doi.org/10.1016/j.procir.2020.01.040.

  12. Urgo, M., Tarabini, M., Tolio, T.: A human modelling and monitoring approach to support the execution of manufacturing operations. CIRP Ann. 68, 5–8 (2019). https://doi.org/10.1016/j.cirp.2019.04.052

    Article  Google Scholar 

  13. Maderna, R., Lanfredini, P., Zanchettin, A.M., Rocco, P.: Real-time monitoring of human task advancement. IEEE Int. Conf. Intell. Robot. Syst. 433–440 (2019). https://doi.org/10.1109/IROS40897.2019.8967933.

  14. Liu, H., Wang, L.: Human motion prediction for human-robot collaboration. J. Manuf. Syst. 44, 287–294 (2017). https://doi.org/10.1016/j.jmsy.2017.04.009

    Article  Google Scholar 

  15. Sankar, S., Tsai, C.Y.: Ros-based human detection and tracking from a wireless controlled mobile robot using kinect. Appl. Syst. Innov. 2, 1–12 (2019). https://doi.org/10.3390/asi2010005

    Article  Google Scholar 

  16. Váncza, J., Monostori, L.: Cyber-physical manufacturing in the light of professor Kanji Ueda’s Legacy. In: Procedia CIRP. pp. 631–638. Elsevier B.V. (2017). https://doi.org/10.1016/j.procir.2017.04.059

  17. Kousi, N., Gkournelos, C., Aivaliotis, S., Giannoulis, C., Michalos, G., Makris, S.: Digital twin for adaptation of robots’ behavior in flexible robotic assembly lines. Procedia Manuf. 28, 121–126 (2019). https://doi.org/10.1016/J.PROMFG.2018.12.020

    Article  Google Scholar 

  18. Alexopoulos, K., Nikolakis, N., Chryssolouris, G.: Digital twin-driven supervised machine learning for the development of artificial intelligence applications in manufacturing. Int. J. Comput. Integr. Manuf. 33, 429–439 (2020). https://doi.org/10.1080/0951192X.2020.1747642

    Article  Google Scholar 

  19. Quigley, M., et al.: ROS: an open-source robot operating system. In: International Conference on Robotics and Automation (2009)

    Google Scholar 

  20. Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43, 172–186 (2021). https://doi.org/10.1109/TPAMI.2019.2929257

    Article  Google Scholar 

  21. Gazebo Robot Simulation. http://gazebosim.org/.. Accessed 14 Jul 2021

Download references

Acknowledgements

This work has been partially funded by the EC research project “ASSISTANT – Learning and robust decision Support systems for agile manufacturing environments” (Grant Agreement: 101000165) (www.assistant-project.eu).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tzavara, E., Angelakis, P., Veloudis, G., Gkournelos, C., Makris, S. (2021). Worker in the Loop: A Framework for Enabling Human-Robot Collaborative Assembly. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. APMS 2021. IFIP Advances in Information and Communication Technology, vol 630. Springer, Cham. https://doi.org/10.1007/978-3-030-85874-2_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85874-2_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85873-5

  • Online ISBN: 978-3-030-85874-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics