Abstract
Industry has taken a big leap forward by placing a human in the center of interest by turning the working areas into a collaborative environment between operators and robots. In this environment, human behavior is a major uncertainty factor that can affect operator’s safety and execution status. Furthermore, the creation of a digital twin including the whole workstation area, the operators and the procedures that take part in there, is a way to design and integrate collaborative systems using a virtual space. This paper aims to overview the current state of the technological trends in human detection, human task monitoring and digital twin integration. Also, the design of the upcoming solution of a case study from the automotive industry will be represented.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Chryssolouris, G.: Manufacturing Systems: Theory and Practice. Springer New York, New York, NY (2006). https://doi.org/10.1007/0-387-28431-1
Chryssolouris, G., Georgoulias, K., Michalos, G.: Production systems flexibility: theory and practice. In: IFAC Proceedings Volumes (IFAC-PapersOnline), pp. 15–21. IFAC Secretariat (2012). https://doi.org/10.3182/20120523-3-RO-2023.00442
Koren, Y., Shpitalni, M.: Design of reconfigurable manufacturing systems. J. Manuf. Syst. 29, 130–141 (2010). https://doi.org/10.1016/J.JMSY.2011.01.001
Houshmand, M., Jamshidnezhad, B.: An extended model of design process of lean production systems by means of process variables. Robot. Comput. Integr. Manuf. 22, 1–16 (2006). https://doi.org/10.1016/j.rcim.2005.01.004
Giret, A., Botti, V.: Engineering holonic manufacturing systems. Comput. Ind. 60, 428–440 (2009). https://doi.org/10.1016/j.compind.2009.02.007
Scholz-Reiter, B., Freitag, M.: Autonomous processes in assembly systems. CIRP Ann. - Manuf. Technol. 56, 712–729 (2007). https://doi.org/10.1016/j.cirp.2007.10.002
Kousi, N., Michalos, G., Aivaliotis, S., Makris, S.: An outlook on future assembly systems introducing robotic mobile dual arm workers. Procedia CIRP. 72, 33–38 (2018). https://doi.org/10.1016/j.procir.2018.03.130
Makris, S.: Cooperating Robots for Flexible Manufacturing. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-51591-1
Wang, L., et al.: Symbiotic human-robot collaborative assembly. CIRP Ann. 68, 701–726 (2019). https://doi.org/10.1016/j.cirp.2019.05.002
Tsarouchi, P., Michalos, G., Makris, S., Athanasatos, T., Dimoulas, K., Chryssolouris, G.: On a human–robot workplace design and task allocation system. Int. J. Comput. Integr. Manuf. 30, 1272–1279 (2017). https://doi.org/10.1080/0951192X.2017.1307524
Andrianakos, G., Dimitropoulos, N., Michalos, G., Makris, S.: An approach for monitoring the execution of human based assembly operations using machine learning. In: Procedia CIRP, pp. 198–203. Elsevier B.V. (2020). https://doi.org/10.1016/j.procir.2020.01.040.
Urgo, M., Tarabini, M., Tolio, T.: A human modelling and monitoring approach to support the execution of manufacturing operations. CIRP Ann. 68, 5–8 (2019). https://doi.org/10.1016/j.cirp.2019.04.052
Maderna, R., Lanfredini, P., Zanchettin, A.M., Rocco, P.: Real-time monitoring of human task advancement. IEEE Int. Conf. Intell. Robot. Syst. 433–440 (2019). https://doi.org/10.1109/IROS40897.2019.8967933.
Liu, H., Wang, L.: Human motion prediction for human-robot collaboration. J. Manuf. Syst. 44, 287–294 (2017). https://doi.org/10.1016/j.jmsy.2017.04.009
Sankar, S., Tsai, C.Y.: Ros-based human detection and tracking from a wireless controlled mobile robot using kinect. Appl. Syst. Innov. 2, 1–12 (2019). https://doi.org/10.3390/asi2010005
Váncza, J., Monostori, L.: Cyber-physical manufacturing in the light of professor Kanji Ueda’s Legacy. In: Procedia CIRP. pp. 631–638. Elsevier B.V. (2017). https://doi.org/10.1016/j.procir.2017.04.059
Kousi, N., Gkournelos, C., Aivaliotis, S., Giannoulis, C., Michalos, G., Makris, S.: Digital twin for adaptation of robots’ behavior in flexible robotic assembly lines. Procedia Manuf. 28, 121–126 (2019). https://doi.org/10.1016/J.PROMFG.2018.12.020
Alexopoulos, K., Nikolakis, N., Chryssolouris, G.: Digital twin-driven supervised machine learning for the development of artificial intelligence applications in manufacturing. Int. J. Comput. Integr. Manuf. 33, 429–439 (2020). https://doi.org/10.1080/0951192X.2020.1747642
Quigley, M., et al.: ROS: an open-source robot operating system. In: International Conference on Robotics and Automation (2009)
Cao, Z., Hidalgo, G., Simon, T., Wei, S.E., Sheikh, Y.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. IEEE Trans. Pattern Anal. Mach. Intell. 43, 172–186 (2021). https://doi.org/10.1109/TPAMI.2019.2929257
Gazebo Robot Simulation. http://gazebosim.org/.. Accessed 14 Jul 2021
Acknowledgements
This work has been partially funded by the EC research project “ASSISTANT – Learning and robust decision Support systems for agile manufacturing environments” (Grant Agreement: 101000165) (www.assistant-project.eu).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 IFIP International Federation for Information Processing
About this paper
Cite this paper
Tzavara, E., Angelakis, P., Veloudis, G., Gkournelos, C., Makris, S. (2021). Worker in the Loop: A Framework for Enabling Human-Robot Collaborative Assembly. In: Dolgui, A., Bernard, A., Lemoine, D., von Cieminski, G., Romero, D. (eds) Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems. APMS 2021. IFIP Advances in Information and Communication Technology, vol 630. Springer, Cham. https://doi.org/10.1007/978-3-030-85874-2_29
Download citation
DOI: https://doi.org/10.1007/978-3-030-85874-2_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85873-5
Online ISBN: 978-3-030-85874-2
eBook Packages: Computer ScienceComputer Science (R0)