Abstract
The main goal of the article was to present the pre-sales of the customer service process using process mining, i.e. assessing the course of activities related to establishing contact with the customer and presenting the sale offer. As a result of the completed proceedings, it was noticed that the examined pre-sales process requires optimization due to such parameters as: long time of implementation of activities in the process, failure to take actions aimed at presenting the offer and incompatible with the clients inquiry presentation. The proceedings described in this article proved that it is possible to analyse the pre-sales process described using the combination of hidden non-participant observation methods and process mining. Unlike expost studies based on data provided by the surveyed organizations, the proposed solution eliminates errors related to data quality, but it is prone to errors related to IT infrastructure, which include problems with e-mail recipients or problems with delivery of messages.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Data formulated on the basis of the quantitative bibliometric analysis based on the Web of Science database, access 08.01.2020.
References
Bezerra, F., Wainer, J., van der Aalst, W.M.P.: Anomaly detection using process mining. In: Halpin, T., et al. (eds.) BPMDS/EMMSAD -2009. LNBIP, vol. 29, pp. 149–161. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01862-6_13
Cleveland, W.S., Devlin, S.J.: Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83, 596–610 (1988). https://doi.org/10.1080/01621459.1988.10478639
Dišek, M., Šperka, R., Kolesár, J.: Conversion of real data from production process of automotive company for process mining analysis. In: Jezic, G., Kusek, M., Chen-Burger, Y.-H., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2017. SIST, vol. 74, pp. 223–233. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59394-4_22
Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., Traver, V.: Process mining methodology for health process tracking using real-time indoor location systems. Sensors. 15, 29821–29840 (2015). https://doi.org/10.3390/s151229769
Hammer, M., Stanton, S.: How process enterprises really work. Harv. Bus. Rev. 77, 108–120 (1999)
Jans, M., Alles, M.G., Vasarhelyi, M.A.: A field study on the use of process mining of event logs as an analytical procedure in auditing. Account. Rev. 89, 1751–1773 (2014). https://doi.org/10.2308/accr-50807
Jans, M., van der Werf, J.M., Lybaert, N., Vanhoof, K.: A business process mining application for internal transaction fraud mitigation. Expert Syst. Appl. 38, 13351–13359 (2011). https://doi.org/10.1016/j.eswa.2011.04.159
Kaymak, U., Mans, R., van de Steeg, T., Dierks, M.: On process mining in health care. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Seoul, Korea (South), pp. 1859–1864. IEEE (2012)
Kiełtyka, L., Kobis, P.: Ekonomiczne aspekty wirtualizacji zasobów informatycznych przedsiębiorstw. PO 13–19 (2013). https://doi.org/10.33141/po.2013.04.03
Leyer, M., Moormann, J.: Combining process mining and statistical methods to evaluate customer integration in service processes. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 147–152. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_14
Mahendrawathi, E.R., Astuti, H.M., Nastiti, A.: Analysis of customer fulfilment with process mining: a case study in a telecommunication company. Procedia Comput. Sci. 72, 588–596 (2015). https://doi.org/10.1016/j.procs.2015.12.167
Mans, R.S., Schonenberg, M.H., Song, M., van der Aalst, W.M.P., Bakker, P.J.M.: Application of process mining in healthcare – a case study in a Dutch hospital. In: Fred, A., Filipe, J., Gamboa, H. (eds.) BIOSTEC 2008. CCIS, vol. 25, pp. 425–438. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92219-3_32
Mans, R., et al.: Process mining techniques: an application to stroke care. In: MIE, vol. 136, pp. 425–438 (2008)
Poniat, R.: On the possibility of using the LOESS regression in the analysis of time series. Przeszłość Demograficzna Polski 38, 104–115 (2016). https://doi.org/10.18276/pdp.2016.2.38-04
R’bigui, H., Cho, C.: Customer oder fulfillment process analysis with process mining: an industrial application in a heavy manufacturing company. In: Proceedings of the 2017 International Conference on Computer Science and Artificial Intelligence - CSAI 2017, Jakarta, Indonesia, pp. 247–252. ACM Press (2017)
Rebuge, Á., Ferreira, D.R.: Business process analysis in healthcare environments: a methodology based on process mining. Inf. Syst. 37, 99–116 (2012). https://doi.org/10.1016/j.is.2011.01.003
Rojas, E., Munoz-Gama, J., Sepúlveda, M., Capurro, D.: Process mining in healthcare: a literature review. J. Biomed. Inform. 61, 224–236 (2016). https://doi.org/10.1016/j.jbi.2016.04.007
Rovani, M., Maggi, F.M., de Leoni, M., van der Aalst, W.M.P.: Declarative process mining in healthcare. Expert Syst. Appl. 42, 9236–9251 (2015). https://doi.org/10.1016/j.eswa.2015.07.040
Terragni, A., Hassani, M.: Analyzing customer journey with process mining: from discovery to recommendations. In: 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud), Barcelona, Spain, pp. 224–229. IEEE (2018)
Terragni, A., Hassani, M.: Optimizing customer journey using process mining and sequence-aware recommendation. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, Limassol Cyprus, pp. 57–65. ACM (2019)
Tsumoto, S., Iwata, H., Hirano, S., Tsumoto, Y.: Similarity-based behavior and process mining of medical practices. Future Gener. Comput. Syst. 33, 21–31 (2014). https://doi.org/10.1016/j.future.2013.10.014
Valerio, D.O., Santos, E.A.P., Loures, E.F.R., Cestari, J.M.A.P.: Application of process mining in after-sales on an automotive industry (2018). https://doi.org/10.12783/dtetr/icpr2017/17635
van der Aalst, W.: Data Science in Action. In: van der Aalst, W. (ed.) Process Mining. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4_1
van der Aalst, W.: Service mining: using process mining to discover, check, and improve service behavior. IEEE Trans. Serv. Comput. 6, 525–535 (2013). https://doi.org/10.1109/TSC.2012.25
van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19345-3
van der Aalst, W., et al. (eds.): Business Process Management Workshops, pp. 169–194. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19345-3
van der Aalst, W.M.P., van Hee, K.M., van der Werf, J.M., Verdonk, M.: Auditing 2.0: using process mining to support tomorrow’s auditor. Computer 43, 90–93 (2010). https://doi.org/10.1109/MC.2010.61
van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36, 450–475 (2011). https://doi.org/10.1016/j.is.2010.09.001
van der Aalst, W.M.P., Weijters, A.J.M.M.: Process mining: a research agenda. Comput. Ind. 53, 231–244 (2004). https://doi.org/10.1016/j.compind.2003.10.001
Willaert, P., Van den Bergh, J., Willems, J., Deschoolmeester, D.: The process-oriented organisation: a holistic view developing a framework for business process orientation maturity. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 1–15. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_1
Yang, W.-S., Hwang, S.-Y.: A process-mining framework for the detection of healthcare fraud and abuse. Expert Syst. Appl. 31, 56–68 (2006). https://doi.org/10.1016/j.eswa.2005.09.003
European Alternative Fuels Observatory. https://www.eafo.eu/. Accessed 20 May 2020
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Sliż, P., Dobrowolska, E. (2021). Process Mining for the Analysis of Pre-sales Customer Service Process – A Hidden Observation in a Polish Automotive Organization. In: Wrycza, S., Maślankowski, J. (eds) Digital Transformation. PLAIS EuroSymposium 2021. Lecture Notes in Business Information Processing, vol 429. Springer, Cham. https://doi.org/10.1007/978-3-030-85893-3_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-85893-3_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-85892-6
Online ISBN: 978-3-030-85893-3
eBook Packages: Computer ScienceComputer Science (R0)