Skip to main content

Process Mining for the Analysis of Pre-sales Customer Service Process – A Hidden Observation in a Polish Automotive Organization

  • Conference paper
  • First Online:
Digital Transformation (PLAIS EuroSymposium 2021)

Abstract

The main goal of the article was to present the pre-sales of the customer service process using process mining, i.e. assessing the course of activities related to establishing contact with the customer and presenting the sale offer. As a result of the completed proceedings, it was noticed that the examined pre-sales process requires optimization due to such parameters as: long time of implementation of activities in the process, failure to take actions aimed at presenting the offer and incompatible with the clients inquiry presentation. The proceedings described in this article proved that it is possible to analyse the pre-sales process described using the combination of hidden non-participant observation methods and process mining. Unlike expost studies based on data provided by the surveyed organizations, the proposed solution eliminates errors related to data quality, but it is prone to errors related to IT infrastructure, which include problems with e-mail recipients or problems with delivery of messages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Data formulated on the basis of the quantitative bibliometric analysis based on the Web of Science database, access 08.01.2020.

References

  1. Bezerra, F., Wainer, J., van der Aalst, W.M.P.: Anomaly detection using process mining. In: Halpin, T., et al. (eds.) BPMDS/EMMSAD -2009. LNBIP, vol. 29, pp. 149–161. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01862-6_13

    Chapter  Google Scholar 

  2. Cleveland, W.S., Devlin, S.J.: Locally weighted regression: an approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83, 596–610 (1988). https://doi.org/10.1080/01621459.1988.10478639

    Article  MATH  Google Scholar 

  3. Dišek, M., Šperka, R., Kolesár, J.: Conversion of real data from production process of automotive company for process mining analysis. In: Jezic, G., Kusek, M., Chen-Burger, Y.-H., Howlett, R.J., Jain, L.C. (eds.) KES-AMSTA 2017. SIST, vol. 74, pp. 223–233. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59394-4_22

    Chapter  Google Scholar 

  4. Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., Traver, V.: Process mining methodology for health process tracking using real-time indoor location systems. Sensors. 15, 29821–29840 (2015). https://doi.org/10.3390/s151229769

    Article  Google Scholar 

  5. Hammer, M., Stanton, S.: How process enterprises really work. Harv. Bus. Rev. 77, 108–120 (1999)

    Google Scholar 

  6. Jans, M., Alles, M.G., Vasarhelyi, M.A.: A field study on the use of process mining of event logs as an analytical procedure in auditing. Account. Rev. 89, 1751–1773 (2014). https://doi.org/10.2308/accr-50807

    Article  Google Scholar 

  7. Jans, M., van der Werf, J.M., Lybaert, N., Vanhoof, K.: A business process mining application for internal transaction fraud mitigation. Expert Syst. Appl. 38, 13351–13359 (2011). https://doi.org/10.1016/j.eswa.2011.04.159

    Article  Google Scholar 

  8. Kaymak, U., Mans, R., van de Steeg, T., Dierks, M.: On process mining in health care. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Seoul, Korea (South), pp. 1859–1864. IEEE (2012)

    Google Scholar 

  9. Kiełtyka, L., Kobis, P.: Ekonomiczne aspekty wirtualizacji zasobów informatycznych przedsiębiorstw. PO 13–19 (2013). https://doi.org/10.33141/po.2013.04.03

  10. Leyer, M., Moormann, J.: Combining process mining and statistical methods to evaluate customer integration in service processes. In: Daniel, F., Barkaoui, K., Dustdar, S. (eds.) BPM 2011. LNBIP, vol. 99, pp. 147–152. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28108-2_14

    Chapter  Google Scholar 

  11. Mahendrawathi, E.R., Astuti, H.M., Nastiti, A.: Analysis of customer fulfilment with process mining: a case study in a telecommunication company. Procedia Comput. Sci. 72, 588–596 (2015). https://doi.org/10.1016/j.procs.2015.12.167

    Article  Google Scholar 

  12. Mans, R.S., Schonenberg, M.H., Song, M., van der Aalst, W.M.P., Bakker, P.J.M.: Application of process mining in healthcare – a case study in a Dutch hospital. In: Fred, A., Filipe, J., Gamboa, H. (eds.) BIOSTEC 2008. CCIS, vol. 25, pp. 425–438. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-92219-3_32

    Chapter  Google Scholar 

  13. Mans, R., et al.: Process mining techniques: an application to stroke care. In: MIE, vol. 136, pp. 425–438 (2008)

    Google Scholar 

  14. Poniat, R.: On the possibility of using the LOESS regression in the analysis of time series. Przeszłość Demograficzna Polski 38, 104–115 (2016). https://doi.org/10.18276/pdp.2016.2.38-04

    Article  Google Scholar 

  15. R’bigui, H., Cho, C.: Customer oder fulfillment process analysis with process mining: an industrial application in a heavy manufacturing company. In: Proceedings of the 2017 International Conference on Computer Science and Artificial Intelligence - CSAI 2017, Jakarta, Indonesia, pp. 247–252. ACM Press (2017)

    Google Scholar 

  16. Rebuge, Á., Ferreira, D.R.: Business process analysis in healthcare environments: a methodology based on process mining. Inf. Syst. 37, 99–116 (2012). https://doi.org/10.1016/j.is.2011.01.003

    Article  Google Scholar 

  17. Rojas, E., Munoz-Gama, J., Sepúlveda, M., Capurro, D.: Process mining in healthcare: a literature review. J. Biomed. Inform. 61, 224–236 (2016). https://doi.org/10.1016/j.jbi.2016.04.007

    Article  Google Scholar 

  18. Rovani, M., Maggi, F.M., de Leoni, M., van der Aalst, W.M.P.: Declarative process mining in healthcare. Expert Syst. Appl. 42, 9236–9251 (2015). https://doi.org/10.1016/j.eswa.2015.07.040

    Article  Google Scholar 

  19. Terragni, A., Hassani, M.: Analyzing customer journey with process mining: from discovery to recommendations. In: 2018 IEEE 6th International Conference on Future Internet of Things and Cloud (FiCloud), Barcelona, Spain, pp. 224–229. IEEE (2018)

    Google Scholar 

  20. Terragni, A., Hassani, M.: Optimizing customer journey using process mining and sequence-aware recommendation. In: Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing, Limassol Cyprus, pp. 57–65. ACM (2019)

    Google Scholar 

  21. Tsumoto, S., Iwata, H., Hirano, S., Tsumoto, Y.: Similarity-based behavior and process mining of medical practices. Future Gener. Comput. Syst. 33, 21–31 (2014). https://doi.org/10.1016/j.future.2013.10.014

    Article  Google Scholar 

  22. Valerio, D.O., Santos, E.A.P., Loures, E.F.R., Cestari, J.M.A.P.: Application of process mining in after-sales on an automotive industry (2018). https://doi.org/10.12783/dtetr/icpr2017/17635

  23. van der Aalst, W.: Data Science in Action. In: van der Aalst, W. (ed.) Process Mining. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4_1

    Chapter  Google Scholar 

  24. van der Aalst, W.: Service mining: using process mining to discover, check, and improve service behavior. IEEE Trans. Serv. Comput. 6, 525–535 (2013). https://doi.org/10.1109/TSC.2012.25

    Article  Google Scholar 

  25. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement of Business Processes. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19345-3

    Book  MATH  Google Scholar 

  26. van der Aalst, W., et al. (eds.): Business Process Management Workshops, pp. 169–194. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19345-3

    Book  Google Scholar 

  27. van der Aalst, W.M.P., van Hee, K.M., van der Werf, J.M., Verdonk, M.: Auditing 2.0: using process mining to support tomorrow’s auditor. Computer 43, 90–93 (2010). https://doi.org/10.1109/MC.2010.61

    Article  Google Scholar 

  28. van der Aalst, W.M.P., Schonenberg, M.H., Song, M.: Time prediction based on process mining. Inf. Syst. 36, 450–475 (2011). https://doi.org/10.1016/j.is.2010.09.001

    Article  Google Scholar 

  29. van der Aalst, W.M.P., Weijters, A.J.M.M.: Process mining: a research agenda. Comput. Ind. 53, 231–244 (2004). https://doi.org/10.1016/j.compind.2003.10.001

    Article  Google Scholar 

  30. Willaert, P., Van den Bergh, J., Willems, J., Deschoolmeester, D.: The process-oriented organisation: a holistic view developing a framework for business process orientation maturity. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 1–15. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75183-0_1

    Chapter  Google Scholar 

  31. Yang, W.-S., Hwang, S.-Y.: A process-mining framework for the detection of healthcare fraud and abuse. Expert Syst. Appl. 31, 56–68 (2006). https://doi.org/10.1016/j.eswa.2005.09.003

    Article  Google Scholar 

  32. European Alternative Fuels Observatory. https://www.eafo.eu/. Accessed 20 May 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Sliż .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sliż, P., Dobrowolska, E. (2021). Process Mining for the Analysis of Pre-sales Customer Service Process – A Hidden Observation in a Polish Automotive Organization. In: Wrycza, S., Maślankowski, J. (eds) Digital Transformation. PLAIS EuroSymposium 2021. Lecture Notes in Business Information Processing, vol 429. Springer, Cham. https://doi.org/10.1007/978-3-030-85893-3_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-85893-3_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-85892-6

  • Online ISBN: 978-3-030-85893-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics